Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JID Innov ; 4(2): 100255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328594

RESUMO

The immune checkpoint ligand PD-L1 has emerged as a molecular target for skin cancer therapy and might also hold promise for preventive intervention targeting solar UV light-induced skin damage. In this study, we have explored the role of PD-L1 in acute keratinocytic photodamage testing the effects of small-molecule pharmacological inhibition. Epidermal PD-L1 upregulation in response to chronic photodamage was established using immunohistochemical and proteomic analyses of a human skin cohort, consistent with earlier observations that PD-L1 is upregulated in cutaneous squamous cell carcinoma. Topical application of the small-molecule PD-L1 inhibitor BMS-202 significantly attenuated UV-induced activator protein-1 transcriptional activity in SKH-1 bioluminescent reporter mouse skin, also confirmed in human HaCaT reporter keratinocytes. RT-qPCR analysis revealed that BMS-202 antagonized UV induction of inflammatory gene expression. Likewise, UV-induced cleavage of procaspase-3, a hallmark of acute skin photodamage, was attenuated by topical BMS-202. NanoString nCounter transcriptomic analysis confirmed downregulation of cutaneous innate immunity- and inflammation-related responses, together with upregulation of immune response pathway gene expression. Further mechanistic analysis confirmed that BMS-202 antagonizes UV-induced PD-L1 expression both at the mRNA and protein levels in SKH-1 epidermis. These data suggest that topical pharmacological PD-L1 antagonism using BMS-202 shows promise for skin protection against photodamage.

2.
Gut Microbes ; 16(1): 2292254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38117560

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory intestinal disease affecting the colon and rectum, with its pathogenesis attributed to genetic background, environmental factors, and gut microbes. This study aimed to investigate the role of enterotypes in UC by conducting a hierarchical analysis, determining differential bacteria using machine learning, and performing Species Co-occurrence Network (SCN) analysis. Fecal bacterial data were collected from UC patients, and a 16S rRNA metagenomic analysis was performed using the QIIME2 bioinformatics pipeline. Enterotype clustering was conducted at the family level, and deep neural network (DNN) classification models were trained for UC and healthy controls (HC) in each enterotype. Results from eleven 16S rRNA gut microbiome datasets revealed three enterotypes: Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Clostridiaceae (ET-C). Ruminococcus (R. gnavus) abundance was significantly higher in UC subjects with ET-B and ET-C than in those with ET-L. R. gnavus also showed a positive correlation with Clostridia in UC SCN for ET-B and ET-C subjects, with a higher correlation in ET-C subjects. Conversely, Odoribacter (O.) splanchnicus and Bacteroides (B.) uniformis exhibited a positive correlation with tryptophan metabolism and AMP-activated protein kinase (AMPK) signaling pathways, while R. gnavus showed a negative correlation. In vitro co-culture experiments with Clostridium (C.) difficile demonstrated that fecal microbiota from ET-B subjects had a higher abundance of C. difficile than ET-L subjects. In conclusion, the ET-B enterotype predisposes individuals to UC, with R. gnavus as a potential risk factor and O. splanchnicus and B. uniformis as protective bacteria, and those with UC may have ultimately become ET-C.


Assuntos
Clostridioides difficile , Colite Ulcerativa , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Bacteroidaceae , Aprendizado de Máquina
3.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958502

RESUMO

Nonmelanoma skin cancers (NMSC) are the most common skin cancers, and about 5.4 million people are diagnosed each year in the United States. A newly developed T-lymphokine-activated killer cell-originated protein kinase (TOPK) inhibitor, HI-TOPK-032, is effective in suppressing colon cancer cell growth, inducing the apoptosis of colon cancer cells and ultraviolet (UV) light-induced squamous cell carcinoma (SCC). This study aimed to investigate the physicochemical properties, permeation behavior, and cytotoxicity potential of HI-TOPK-032 prior to the development of a suitable topical formulation for targeted skin drug delivery. Techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, differential scanning calorimetry (DSC), hot-stage microscopy (HSM), X-ray powder diffraction (XRPD), Karl Fisher (KF) coulometric titration, Raman spectrometry, confocal Raman microscopy (CRM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and Fourier transform infrared microscopy were used to characterize HI-TOPK-032. The dose effect of HI-TOPK-032 on in vitro cell viability was evaluated using a 2D cell culture of the human skin keratinocyte cell line (HaCaT) and primary normal human epidermal keratinocytes (NHEKs). Transepithelial electrical resistance (TEER) at the air-liquid interface as a function of dose and time was measured on the HaCAT human skin cell line. The membrane permeation behavior of HI-TOPK-032 was tested using the Strat-M® synthetic biomimetic membrane with an in vitro Franz cell diffusion system. The physicochemical evaluation results confirmed the amorphous nature of the drug and the homogeneity of the sample with all characteristic chemical peaks. The in vitro cell viability assay results confirmed 100% cell viability up to 10 µM of HI-TOPK-032. Further, a rapid, specific, precise, and validated reverse phase-high performance liquid chromatography (RP-HPLC) method for the quantitative estimation of HI-TOPK-032 was developed. This is the first systematic and comprehensive characterization of HI-TOPK-032 and a report of these findings.


Assuntos
Neoplasias do Colo , Neoplasias Cutâneas , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias do Colo/patologia , Técnicas de Cultura de Células
4.
Cancers (Basel) ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835367

RESUMO

Carcinogenesis, the process by which normal cells transform into cancer cells, is complex and multifaceted [...].

5.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686135

RESUMO

This study aimed to investigate alterations in the gut microbiota of patients with depression compared to those in the gut microbiota of healthy individuals based on enterotypes as a classification framework. Fecal bacteria FASTA/Q samples from 333 Chinese participants, including 107 healthy individuals (Healthy group) and 226 individuals suffering from depression (DP group), were analyzed. The participants were classified into three enterotypes: Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Prevotellaceae (ET-P). An α-diversity analysis revealed no significant differences in microbial diversity between the Healthy and DP groups across all enterotypes. However, there were substantial differences in the gut microbial composition for ß-diversity, particularly within ET-L and ET-B. The DP group within ET-B exhibited a higher abundance of Proteobacteria, while a linear discriminant analysis (LDA) of the DP group showed an increased relative abundance of specific genera, such as Mediterraneibacter, Blautia, Bifidobacterium, and Clostridium. Within ET-L, Bifidobacterium, Blautia, Clostridium, Collinsella, and Corynebacterium were significantly higher in the DP group in the LDA and ANOVA-like differential expression-2 (ALDEx2) analyses. At the species level of ET-L, Blautia luti, Blautia provencensis, Blautia glucerasea, Clostridium innocuum, Clostridium porci, and Clostridium leptum were the primary bacteria in the DP group identified using the machine learning approach. A network analysis revealed a more tightly interconnected microbial community within ET-L than within ET-B. This suggests a potentially stronger functional relationship among the gut microbiota in ET-L. The metabolic pathways related to glucose metabolism, tryptophan and tyrosine metabolism, neurotransmitter metabolism, and immune-related functions showed strong negative associations with depression, particularly within ET-L. These findings provide insights into the gut-brain axis and its role in the pathogenesis of depression, thus contributing to our understanding of the underlying mechanisms in Asian individuals. Further research is warranted to explain the mechanistic links between gut microbiota and depression and to explore their potential for use in precision medicine interventions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Depressão , Povo Asiático , Eixo Encéfalo-Intestino , Bifidobacterium
6.
NPJ Precis Oncol ; 7(1): 58, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311884

RESUMO

Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.

7.
Math Biosci Eng ; 20(2): 1580-1598, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899499

RESUMO

Biomarkers plays an important role in the prediction and diagnosis of cancers. Therefore, it is urgent to design effective methods to extract biomarkers. The corresponding pathway information of the microarray gene expression data can be obtained from public database, which makes possible to identify biomarkers based on pathway information and has been attracted extensive attention. In the most existing methods, all the member genes in the same pathway are regarded as equally important for inferring pathway activity. However, the contribution of each gene should be different in the process of inferring pathway activity. In this research, an improved multi-objective particle swarm optimization algorithm with penalty boundary intersection decomposition mechanism (IMOPSO-PBI) has been proposed to quantify the relevance of each gene in pathway activity inference. In the proposed algorithm, two optimization objectives namely t-score and z-score respectively has been introduced. In addition, in order to solve the problem that optimal set with poor diversity in the most multi-objective optimization algorithms, an adaptive mechanism for adjusting penalty parameters based on PBI decomposition has been introduced. The performance of the proposed IMOPSO-PBI approach compared with some existing methods on six gene expression datasets has been given. To verify the effectiveness of the proposed IMOPSO-PBI algorithm, experiments were carried out on six gene datasets and the results has been compared with the existing methods. The comparative experiment results show that the proposed IMOPSO-PBI method has a higher classification accuracy and the extracted feature genes are verified possess biological significance.


Assuntos
Algoritmos , Expressão Gênica , Humanos , Biomarcadores/análise
8.
Biochem Pharmacol ; 209: 115415, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657604

RESUMO

Chronic solar ultraviolet exposure is a major risk factor for cutaneous squamous cell carcinoma (cSCC), which is the second most common type of skin cancer. Our previous data showed that total protein and phosphorylation levels of T-LAK cell-originated protein kinase (TOPK) were enhanced in solar-simulated light (SSL)-induced skin carcinogenesis and overexpressed in actinic keratosis (AK) and cSCC human skin tissues compared to those in matched normal skin. Thus, targeting TOPK activity could be a helpful approach for treating cSCC. Our data showed that orobol directly binds to TOPK in an ATP-independent manner and inhibits TOPK kinase activity. Furthermore, orobol inhibited anchorage-independent colony formation by SCC12 cells in a dose-dependent manner. After discontinuing the treatment, patients commonly return to tumor-bearing conditions; therefore, therapy or intermittent dosing of drugs must be continued indefinitely. Thus, to examine the efficacy of orobol against the development and regrowth of cSCC, we established mouse models including prevention, and therapeutic models on the chronic SSL-irradiated SKH-1 hairless mice. Early treatment with orobol attenuates chronic SSL-induced cSCC development. Furthermore, orobol showed therapeutic efficacy after the formation of chronic SSL irradiation-induced tumor. In the mouse model with intermittent dosing of orobol, our data showed that re-application of orobol is effective for reducing tumor regrowth after discontinuation of treatment. Moreover, oncogenic protein levels were significantly attenuated by orobol treatment in the SSL-stimulated human skin. Thus, we suggest that orobol, as a promising TOPK inhibitor, could have an effective clinical approach to prevent and treat the development and regrowth of cSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/complicações , Carcinoma de Células Escamosas/patologia , Raios Ultravioleta/efeitos adversos , Modelos Animais de Doenças
9.
Cancer Res ; 82(6): 949-965, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34949672

RESUMO

Because of profound effects observed in carcinogenesis, prostaglandins (PG), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.


Assuntos
Neoplasias , Prostaglandinas , Humanos , Neoplasias/prevenção & controle , Prostaglandina-Endoperóxido Sintases/metabolismo , Prostaglandinas/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais
10.
Carcinogenesis ; 43(2): 126-139, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34919670

RESUMO

Helicobacter pylori infection and alcohol intake are independent risk factors in gastric carcinogenesis; however, until now, the combined effect of H. pylori infection and alcohol consumption and the specific mechanism is still problematic. Here, we developed a series of mouse models that progress from chronic gastritis to gastric cancer, induced by infecting H. pylori combined with chronic alcohol consumption and then determining the molecular mechanism of the progression by flow cytometry, western blotting, qPCR, Mito Traker assay in the gastric cancer and T-cell lines. Interleukin-10 (IL-10) knockout mice was used to determine whether IL-10 deficiency directly contributes to H. pylori and alcohol induced gastric tumorigenesis. Alcohol consumption, together with H. pylori infection, causes gastric cancer; IL-10 downregulation and mitochondrial metabolic dysfunction in CD8+ cells are also involved. IL-10 knockout accelerates tumor development in mice with either H. pylori infection or alcohol induced gastric cancer or both. IL-10 inhibits glucose uptake and glycolysis and promotes oxidative phosphorylation with lactate inhibition. Consequently, in the absence of IL-10 signaling, CD8+ cells accumulate damaged mitochondria in a mouse model of gastric cancer induced with the combination of alcohol plus H. pylori infection, and this results in mitochondrial dysfunction and production of IL-1ß. IL-1ß promotes H. pylori infection and reduces NKX6.3 gene expression, resulting in increased cancer cell survival and proliferation. Gastric cancer can be induced by the combination of H. pylori infection and chronic alcohol consumption through IL-10 inhibition induced CD8+ cells dysfunction and NKX6.3 suppression.


Assuntos
Alcoolismo , Gastrite , Infecções por Helicobacter , Neoplasias Gástricas , Alcoolismo/complicações , Animais , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Mucosa Gástrica/patologia , Gastrite/metabolismo , Gastrite/patologia , Infecções por Helicobacter/complicações , Helicobacter pylori , Interleucina-10/genética , Camundongos , Neoplasias Gástricas/patologia
11.
Opt Express ; 29(14): 22749-22760, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34266031

RESUMO

A holographic near-eye display (NED) system based on complex amplitude modulation (CAM) with band-limited zone plates is proposed. The whole system mainly consists of a phase-only spatial light modulator (SLM), an Abbe-Porter filter system, an eyepiece, and an image combiner. The point source method based on band limited zone plates is used to accurately control the bandwidth of the target complex amplitude. The effects of intensity modulation coefficient γ in the frequency-filtering method on the intensity and the quality of reconstructed images are analyzed, which provide a judgment basis for selecting the appropriate value of γ. We also derive the expressions of the field of view (FOV) and exit pupil of the NED system. Since the holographic image is magnified in two steps in this system, the large FOV can be obtained. The optical experimental results show that the proposed system can provide a dynamic holographic three-dimensional (3D) augmented reality (AR) display with a 23.5° horizontal FOV.

12.
Cancer Res ; 81(4): 945-955, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33184107

RESUMO

The Wilms' tumor 1 (WT1) gene is well known as a chameleon gene. It plays a role as a tumor suppressor in Wilms' tumor but also acts as an oncogene in other cancers. Previously, our group reported that a canonical AUG starting site for the WT1 protein (augWT1) acts as a tumor suppressor, whereas a CUG starting site for the WT1 protein (cugWT1) functions as an oncogene. In this study, we report an oncogenic role of cugWT1 in the AOM/DSS-induced colon cancer mouse model and in a urethane-induced lung cancer model in mice lacking cugWT1. Development of chemically-induced tumors was significantly depressed in cugWT1-deficient mice. Moreover, glycogen synthase kinase 3ß promoted phosphorylation of cugWT1 at S64, resulting in ubiquitination and degradation of the cugWT1 associated with the F-box-/- WD repeat-containing protein 8. Overall, our findings suggest that inhibition of cugWT1 expression provides a potential candidate target for therapy. SIGNIFICANCE: These findings demonstrate that CUG-translated WT1 plays an oncogenic role in vivo, and GSK3ß-mediated phosphorylation of cugWT1 induces its ubiquitination and degradation in concert with FBXW8.


Assuntos
Glicogênio Sintase Quinase 3 beta/fisiologia , Neoplasias Renais/patologia , Proteínas WT1/genética , Tumor de Wilms/patologia , Células A549 , Animais , Células Cultivadas , Códon de Iniciação/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Células HeLa , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oncogenes/genética , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Ubiquitinação/genética , Proteínas WT1/química , Proteínas WT1/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
13.
Theranostics ; 10(21): 9721-9740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863956

RESUMO

Rationale: Melanoma is an aggressive tumor of the skin and drug resistance is still a major problem in melanoma therapy. Novel targets and effective agents to overcome drug resistant melanoma are urgently needed in clinical therapy. Methods: Gene Expression Omnibus (GEO) database analysis, pathway enrichment analysis, and survival rate analysis were utilized to identify a candidate target. An anchorage-independent cell growth assay, flow cytometry, Western blot, and a xenograft mouse model were used to study the function of Aurora kinase B (AURKB) in both drug-sensitive and drug-resistant melanoma. Next, HI-511, a novel dual-target inhibitor targeting both AURKB and BRAF V600E, was designed and examined by an in vitro kinase assay. Methods as indicated above in addition to a BRAF V600E/PTEN-loss melanoma mouse model were used to demonstrate the effect of HI-511 on melanoma development in vitro and in vivo. Results: AURKB is highly expressed in melanoma and especially in vemurafenib-resistant melanoma and the expression was correlated with patient survival rate. Knocking down AURKB inhibited cell growth and induced apoptosis in melanoma, which was associated with the BRAF/MEK/ERKs and PI3-K/AKT signaling pathways. Importantly, we found that HI-511, a novel dual-target inhibitor against AURKB and BRAF V600E, suppresses both vemurafenib-sensitive and vemurafenib-resistant melanoma growth in vitro and in vivo by inducing apoptosis and mediating the inhibition of the BRAF/MEK/ERKs and PI3K/AKT signaling pathways. Conclusion: AURKB is a potential target for melanoma treatment. HI-511, a novel dual-target inhibitor against both AURKB and BRAF V600E, could achieve durable suppression of melanoma growth, even drug-resistant melanoma growth.


Assuntos
Aurora Quinase B/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vemurafenib/farmacologia
14.
Mol Cancer Res ; 18(11): 1660-1674, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32801160

RESUMO

Regulator of chromosome condensation 2 (RCC2) is a protein located in the centrosome, which ensures that cell division proceeds properly. Previous reports show that RCC2 is overexpressed in some cancers and could play a key role in tumor development, but the mechanisms concerning how this occurs are not understood. Furthermore, no evidence exists regarding its role in esophageal cancer. We studied the relevance of RCC2 in esophageal cancer growth and its regulation on Sox2, an important transcription factor promoting esophageal cancer. RCC2 was overexpressed in esophageal tumors compared with normal tissue, and this overexpression was associated with tumorigenicity by increasing cell proliferation, anchorage-independent growth, and migration. These oncogenic effects were accompanied by overexpression of Sox2. RCC2 upregulated and stabilized Sox2 expression and its target genes by inhibiting ubiquitination-mediated proteasome degradation. Likewise, RCC2 increased the transcriptional activity and promoter binding of Sox2. In vivo studies indicated that RCC2 and Sox2 were overexpressed in esophageal tumors compared with normal tissue, and this upregulation occurs in the esophageal basal cell layer for both proteins. In conditional knockout mice, RCC2 deletion decreased the tumor nodule formation and progression in the esophagus compared with wild-type mice. Proliferating cell nuclear antigen expression, a cell proliferation marker, was also downregulated in RCC2 knockout mice. Overall, our data show for the first time that RCC2 is an important protein for the stabilization and transcriptional activation of Sox2 and further promotion of malignancy in esophageal cancer. IMPLICATIONS: This study shows that RCC2 controls Sox2 expression and transcriptional activity to mediate esophageal cancer formation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Neoplasias Esofágicas/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Proliferação de Células , Neoplasias Esofágicas/patologia , Humanos , Camundongos , Camundongos Knockout
15.
Cancer Res ; 80(19): 4158-4171, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816906

RESUMO

The key functional molecules involved in inflammatory bowel disease (IBD) and IBD-induced colorectal tumorigenesis remain unclear. In this study, we found that the apoptosis repressor with caspase recruitment domain (ARC) protein plays critical roles in IBD. ARC-deficient mice exhibited substantially higher susceptibility to dextran sulfate sodium (DSS)-induced IBD compared with wild-type mice. The inflammatory burden induced in ARC-deficient conditions was inversely correlated with CCL5 and CXCL5 levels in immune cells, especially CD4-positive T cells. Pathologically, ARC expression in immune cells was significantly decreased in clinical biopsy specimens from patients with IBD compared with normal subjects. In addition, ARC levels inversely correlated with CCL5 and CXCL5 levels in human biopsy specimens. ARC interacted with TNF receptor associated factor (TRAF) 6, regulating ubiquitination of TRAF6, which was associated with NF-κB signaling. Importantly, we identified a novel ubiquitination site at lysine 461, which was critical in the function of ARC in IBD. ARC played a critical role in IBD and IBD-associated colon cancer in a bone marrow transplantation model and azoxymethane/DSS-induced colitis cancer mouse models. Overall, these findings reveal that ARC is critically involved in the maintenance of intestinal homeostasis and protection against IBD through its ubiquitination of TRAF6 and subsequent modulation of NF-κB activation in T cells. SIGNIFICANCE: This study uncovers a crucial role of ARC in the immune system and IBD, giving rise to a novel strategy for IBD and IBD-associated colon cancer therapy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Colorretais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Proteínas Musculares/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Azoximetano/toxicidade , Transplante de Medula Óssea , Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL5/metabolismo , Quimiocina CXCL5/metabolismo , Colite/induzido quimicamente , Neoplasias Colorretais/induzido quimicamente , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Jurkat , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/química , Proteínas Musculares/genética , Ubiquitinação
16.
Oncotarget ; 11(20): 1846-1861, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32499870

RESUMO

The Timeless (TIM) and it's interacting partner TIPIN protein complex is well known for its role in replication checkpoints and normal DNA replication processes. Recent studies revealed the involvement of TIM and TIPIN in human malignancies; however, no evidence is available regarding the expression of the TIM/TIPIN protein complex or its potential role in melanoma. Therefore, we investigated the role of this complex in melanoma. To assess the role of the TIM/TIPIN complex in melanoma, we analyzed TIM/TIPIN expression data from the publicly accessible TCGA online database, Western blot analysis, and RT-qPCR in a panel of melanoma cell lines. Lentivirus-mediated TIM/TIPIN knockdown in A375 melanoma cells was used to examine proliferation, colony formation, and apoptosis. A xenograft tumor formation assay was also performed. The TIM/TIPIN complex is frequently overexpressed in melanoma cells compared to normal melanocytes. We also discovered that the overexpression of TIM and TIPIN was significantly associated with poorer prognosis of melanoma patients. Furthermore, we observed that shRNA-mediated knockdown of TIM and TIPIN reduced cell viability and proliferation due to the induction of apoptosis and increased levels of γH2AX, a marker of DNA damage. In a xenograft tumor nude mouse model, shRNA-knockdown of TIM/TIPIN significantly reduced tumor growth. Our results suggest that the TIM/TIPIN complex plays an important role in tumorigenesis of melanoma, which might reveal novel approaches for the development of new melanoma therapies. Our studies also provide a beginning structural basis for understanding the assembly of the TIM/TIPIN complex. Further mechanistic investigations are needed to determine the complex's potential as a biomarker of melanoma susceptibility. Targeting TIM/TIPIN might be a potential therapeutic strategy against melanoma.

17.
Mol Cancer Res ; 18(7): 1028-1038, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32269074

RESUMO

The identification of oncogenic biomolecules as drug targets is an unmet need for the development of clinically effective novel anticancer therapies. In this study, we report for the first time that opsin 4/melanopsin (OPN4) plays a critical role in the pathogenesis of non-small cell lung cancer (NSCLC) and is a potential drug target. Our study has revealed that OPN4 is overexpressed in human lung cancer tissues and cells, and is inversely correlated with patient survival probability. Knocking down expression of OPN4 suppressed cells growth and induced apoptosis in lung cancer cells. We have also found that OPN4, a G protein-coupled receptor, interacted with Gα11 and triggered the PKC/BRAF/MEK/ERKs signaling pathway in lung adenocarcinoma cells. Genetic ablation of OPN4 attenuated the multiplicity and the volume of urethane-induced lung tumors in mice. Importantly, our study provides the first report of AE 51310 (1-[(2,5-dichloro-4-methoxyphenyl)sulfonyl]-3-methylpiperidine) as a small-molecule inhibitor of OPN4, suppressed the anchorage-independent growth of lung cancer cells and the growth of patient-derived xenograft tumors in mice. IMPLICATIONS: Overall, this study unveils the role of OPN4 in NSCLC and suggests that targeting OPN4 with small molecules, such as AE 51310 would be interesting to develop novel anticancer therapies for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Opsinas de Bastonetes/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Células A549 , Adenocarcinoma de Pulmão/induzido quimicamente , Adenocarcinoma de Pulmão/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Camundongos , Bibliotecas de Moléculas Pequenas/farmacologia , Uretana/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
EBioMedicine ; 49: 145-156, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31707149

RESUMO

BACKGROUND: Barrett's esophagus (BE), a complication of gastroesophageal reflux disease (GERD), predisposes patients to esophageal adenocarcinoma (EAC). Reliable biomarkers for early detection and discovery of potential drug targets are urgently needed for improved BE and EAC patient outcomes. METHODS: Patient biopsy samples were evaluated for COX1/2, and thromboxane A2 synthase (TBXAS) expression. Circulating prostaglandins biosynthesis was determined using enzyme immunoassay kits. Anchorage-independent cell growth assay, crystal violet staining assay, and xenograft experiments were conducted to assess BE and EAC cell growth. A surgical mouse model of reflux (i.e., esophagoduodenostomy) was established and samples were analyzed using an enzyme immunoassay kit, immunohistochemistry, immunoblotting, or RT-PCR. Esophageal biopsy samples (pre- and post-intervention) were obtained from a randomized clinical trial in which participants were administered esomeprazole (40 mg) twice daily in combination with an acetylsalicylic acid (ASA) placebo or 81 or 325 mg ASA for 28 days. Esophageal biopsy specimens before and after the intervention period were analyzed. FINDINGS: COX2 and TBXAS are highly expressed in BE and EAC patients accompanied by a pronounced elevation of circulating TXA2 levels. ASA suppressed BE and EAC growth by targeting the TXA2 pathway. Additionally, biopsies from 49 patients (with similar baseline characteristics) showed that ASA substantially decreased serum TXA2 levels, resulting in reduced inflammation. INTERPRETATION: This study establishes the importance of the COX1/2-driven TXA2 pathway in BE and EAC pathophysiology and lays the groundwork for introducing a TXA2-targeting strategy for EAC prevention and early detection. FUNDING: Hormel Foundation, Exact Sciences, Pentax Medical, Intromedic and National Cancer.


Assuntos
Adenocarcinoma/tratamento farmacológico , Esôfago de Barrett/tratamento farmacológico , Carcinogênese/patologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Terapia de Alvo Molecular , Transdução de Sinais , Tromboxano A2/metabolismo , Adenocarcinoma/sangue , Animais , Aspirina/farmacologia , Esôfago de Barrett/sangue , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Neoplasias Esofágicas/sangue , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fator de Transcrição STAT3/metabolismo , Tromboxano A2/sangue
20.
Cancer Prev Res (Phila) ; 12(12): 837-848, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31554629

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. However, promising agents for lung cancer prevention are still very limited. Identification of preventive targets and novel effective preventive agents is urgently needed for clinical applications. In this study, we found that fluvastatin targeted 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR), which a rate-limiting enzyme in the mevalonate pathway, and inhibited non-small cell lung cancer (NSCLC) tumorigenesis. Initially, we demonstrated that HMGCR is overexpressed in human lung adenocarcinoma tissues compared with normal tissues. Knockdown of HMGCR in NSCLC cells attenuated growth and induced apoptosis in vitro and in vivo Furthermore, we found that fluvastatin, an inhibitor of HMGCR, suppressed NSCLC cell growth and induced apoptosis. Intriguingly, fluvastastin functions by inhibiting the HMGCR-driven Braf/MEK/ERK1/2 and Akt signaling pathways. Notably, fluvastatin attenuated tumor growth in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis and in a patient-derived xenograft lung tumor model. Overall, our findings suggest that fluvastatin might be promising chemopreventive or potential therapeutic drug against NSCLC tumorigenesis, providing hope for rapid clinical translation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/prevenção & controle , Fluvastatina/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Neoplasias Pulmonares/prevenção & controle , Acil Coenzima A/metabolismo , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinógenos/toxicidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Fluvastatina/uso terapêutico , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Inibidores de Hidroximetilglutaril-CoA Redutases , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Ácido Mevalônico/metabolismo , Camundongos , Pessoa de Meia-Idade , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Nitrosaminas/toxicidade , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...