Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Ann Hematol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847852

RESUMO

Bone marrow stromal cells (BMSCs) can promote the growth of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). Histone deacetylases (HDACs) play essential roles in the proliferation and apoptosis resistance of Ph + ALL cells. In our previous study, inhibiting histone deacetylase 1 (HDAC1) decreases the proliferation of Ph + ALL cells. However, little is known regarding how HDAC1 in BMSCs of Ph + ALL patients affects the imatinib (IM) resistance. Therefore, the present work examined the roles of HDAC1 in BMSCs. Overexpression of HDAC1 was found in BMSCs of Ph + ALL patients with IM resistance. In addition, the Ph + ALL cell line SUP-B15 was co-cultured with BMSCs after lentivirus transfection for regulating HDAC1 expression. Knockdown of HDAC1 within BMSCs elevated the IM-mediated SUP-B15 cell apoptosis, while increasing HDAC1 expression had an opposite effect. IL-6 in BMSCs, which is an important factor for the microenvironment-associated chemoresistance, showed evident up-regulation in HDAC1-upregulated BMSCs and down-regulation in HDAC1-downregulated BMSCs. While recombinant IL-6 (rIL-6) can reversed the sensitivity of SUP-B15 cells to IM induced by downregulating HDAC1 expression in BMSCs. HDAC1 showed positive regulation on IL-6 transcription and secretion. Moreover, IL-6 secretion induced by HDAC1 in BMSCs might enhance IM resistance in Ph + ALL cells. With regard to the underlying molecular mechanism, NF-κB, an important signal responsible for IL-6 transcription in BMSCs, mediated the HDAC1-regulated IL-6 expression. Collectively, this study facilitated to develop HDAC1 inhibitors based not only the corresponding direct anti-Ph + ALL activity but also the regulation of bone marrow microenvironment.

2.
J Hazard Mater ; 467: 133707, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335621

RESUMO

Identifying the impact of pollutants on diseases is crucial. However, assessing the health risks posed by the interplay of multiple pollutants is challenging. This study introduces the concept of Pollutants Outcome Disease, integrating multidisciplinary knowledge and employing explainable artificial intelligence (AI) to explore the joint effects of industrial pollutants on diseases. Using lung cancer as a representative case study, an extreme gradient boosting predictive model that integrates meteorological, socio-economic, pollutants, and lung cancer statistical data is developed. The joint effects of industrial pollutants on lung cancer are identified and analyzed by employing the SHAP (Shapley Additive exPlanations) interpretable machine learning technique. Results reveal substantial spatial heterogeneity in emissions from CPG and ILC, highlighting pronounced nonlinear relationships among variables. The model yielded strong predictions (an R of 0.954, an RMSE of 4283, and an R2 of 0.911) and emphasized the impact of pollutant emission amounts on lung cancer responses. Diverse joint effects patterns were observed, varying in terms of patterns, regions (frequency), and the extent of antagonistic and synergistic effects among pollutants. The study provides a new perspective for exploring the joint effects of pollutants on diseases and demonstrates the potential of AI technology to assist scientific discovery.


Assuntos
Poluentes Ambientais , Neoplasias Pulmonares , Humanos , Inteligência Artificial , Aprendizado de Máquina , Indústrias , Neoplasias Pulmonares/induzido quimicamente
3.
Nat Sci Sleep ; 15: 903-913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954026

RESUMO

Purpose: This study aims to evaluate the effect of S-ketamine on slow wave sleep (SWS) and the related changes in serum protein in gynecological patients after open abdomen surgery. Methods: This was a randomized controlled trial. One hundred gynecological patients undergoing open abdomen surgery were randomized into an S-ketamine group (group S) or placebo group (0.9% saline; group C). During operation, patients in group S received adjuvant S-ketamine infusion (0.2 mg·kg-1·h-1) while those in group C received 0.9% saline. All patients were connected to patient-controlled intravenous analgesia (PCIA) pump in the end of the surgery and the patients in group S with an additional S-ketamine in PCIA pump. Polysomnogram (PSG) was monitored during the next night after surgery with PCIA pump. Blood samples were collected for proteomic analysis at 6:00 AM after PSG monitoring. The primary outcome was the percentage of SWS (also known as stage 3 non-rapid eye movement sleep, stage N3) on the next night after surgery, and the secondary outcome was subjective sleep quality, pain scores, and the changes in serum proteomics. Results: Complete polysomnogram recordings were obtained from 64 study participants (31 in group C and 33 in group S). The administration of S-ketamine infusion resulted in a significant increase in the percentage of SWS/N3 compared to the control group (group C, median (IQR [range]), 8.9 (6.3, 12.5); group S, median (IQR [range]), 15.6 (12.4, 18.8), P<0.001). However, subjective evaluations of sleep quality revealed no significant variances between the two groups. The protein affected by S-ketamine was primarily associated with posttranslational modification, protein turnover, carbohydrate transport, and metabolism. Conclusion: In patients undergoing open gynecological surgery, S-ketamine enhanced the percentage of objective sleep of SWS during the next night after surgery. Additionally, there were differences observed in serum protein levels between the two groups. Trial Registration: ChiCTR2200055180. Registered on 02/01/2022.

4.
EMBO Rep ; 24(12): e57500, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870259

RESUMO

SIRT2, a cytoplasmic member of the Sirtuin family, has important roles in immunity and inflammation. However, its function in regulating the response to DNA virus infection remains elusive. Here, we find that SIRT2 is a unique regulator among the Sirtuin family that negatively modulates the cGAS-STING-signaling pathway. SIRT2 is down-regulated after Herpes simplex virus-1 (HSV-1) infection, and SIRT2 deficiency markedly elevates the expression levels of type I interferon (IFN). SIRT2 inhibits the DNA binding ability and droplet formation of cGAS by interacting with and deacetylating G3BP1 at K257, K276, and K376, leading to the disassembly of the cGAS-G3BP1 complex, which is critical for cGAS activation. Administration of AGK2, a selective SIRT2 inhibitor, protects mice from HSV-1 infection and increases the expression of IFN and IFN-stimulated genes. Our study shows that SIRT2 negatively regulates cGAS activation through G3BP1 deacetylation, suggesting a potential antiviral strategy by modulating SIRT2 activity.


Assuntos
DNA Helicases , Imunidade Inata , Animais , Camundongos , DNA Helicases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Transdução de Sinais , Sirtuína 2/genética , Sirtuína 2/metabolismo
5.
Cell Death Differ ; 30(8): 1916-1930, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419986

RESUMO

Solute carrier family 25 member 51 (SLC25A51) was recently identified as the mammalian mitochondrial NAD+ transporter essential for mitochondria functions. However, the role of SLC25A51 in human disease, such as cancer, remains undefined. Here, we report that SLC25A51 is upregulated in multiple cancers, which promotes cancer cells proliferation. Loss of SLC25A51 elevates the mitochondrial proteins acetylation levels due to SIRT3 dysfunctions, leading to the impairment of P5CS enzymatic activity, which is the key enzyme in proline biogenesis, and the reduction in proline contents. Notably, we find fludarabine phosphate, an FDA-approved drug, is able to bind with and inhibit SLC25A51 functions, causing mitochondrial NAD+ decrease and proteins hyperacetylation, which could further synergize with aspirin to reinforce the anti-tumor efficacy. Our study reveals that SLC25A51 is an attractive anti-cancer target, and provides a novel drug combination of fludarabine phosphate with aspirin as a potential cancer therapy strategy.


Assuntos
Prolina , Sirtuína 3 , Animais , Humanos , Acetilação , Prolina/farmacologia , Prolina/metabolismo , Mitocôndrias/metabolismo , Sirtuína 3/metabolismo , Homeostase , Mamíferos/metabolismo
6.
Front Immunol ; 14: 1133111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234153

RESUMO

Modulation of surface T cell antigen receptor (TCR) expression is crucial for proper T cell development and maintenance of mature T cell function at steady state and upon stimulation. We previously determined that CCDC134 (coiled-coil domain containing 134), a cytokine-like molecule that served as a potential member of the γc cytokine family, contributes to antitumor responses by augmenting CD8+ T cell-mediated immunity. Here we show that T cell-specific deletion of Ccdc134 decreased peripheral mature CD4+ and CD8+ T cells, which resulted in impaired T cell homeostasis. Moreover, Ccdc134-deficient T cells exhibited an attenuated response to TCR stimulation in vitro, showing lower activation and proliferative capacity. This was further reflected in vivo, rendering mice refractory to T cell-mediated inflammatory and antitumor responses. More importantly, CCDC134 is associated with TCR signaling components, including CD3ϵ, and attenuated TCR signaling in Ccdc134-deficient T cells via altered CD3ϵ ubiquitination and degradation. Taken together, these findings suggest a role for CCDC134 as a positive regulator of TCR-proximal signaling and provide insight into the cell-intrinsic functional consequences of Ccdc134 deficiency in the attenuation of T cell-mediated inflammatory and antitumor responses.


Assuntos
Linfócitos T CD8-Positivos , Transdução de Sinais , Camundongos , Animais , Receptores de Antígenos de Linfócitos T/metabolismo , Ativação Linfocitária , Citocinas/metabolismo
7.
Cytotherapy ; 25(7): 728-738, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36890092

RESUMO

BACKGROUND AIMS: Recently, immune escape has been considered as a factor leading to relapse of acute myeloid leukemia (AML). In our previous study, heme oxygenase 1 (HO-1) proved to play an essential role in the proliferation and drug resistance of AML cells. In addition, recent studies by our group have shown that HO-1 is involved in immune escape in AML. Nevertheless, the specific mechanism by which HO-1 mediates immune escape in AML remains unclear. METHODS: In this study, we found that patients with AML and an overexpression of HO-1 had a high rate of recurrence. In vitro, overexpression of HO-1 attenuated the toxicity of natural killer (NK) cells to AML cells. Further study indicated that HO-1 overexpression inhibited human leukocyte antigen-C and reduced the cytotoxicity of NK cells to AML cells, leading to AML relapse. Mechanistically, HO-1 inhibited human leukocyte antigen-C expression by activating the JNK/C-Jun signaling pathway. RESULTS: In AML, HO-1 inhibits cytotoxicity of NK cells by inhibiting the expression of HLA-C, thus causing immune escape of AML cells. CONCLUSIONS: NK cell-mediated innate immunity is important for the fight against tumors, especially when acquired immunity is depleted and dysfunctional, and the HO-1/HLA-C axis can induce functional changes in NK cells in AML. Anti-HO-1 treatment can promote the antitumor effect of NK cells and may play an important role in the treatment of AML.


Assuntos
Heme Oxigenase-1 , Leucemia Mieloide Aguda , Humanos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Antígenos HLA-C/metabolismo , Leucemia Mieloide Aguda/terapia , Células Matadoras Naturais
8.
Mol Omics ; 19(4): 351-361, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36892434

RESUMO

Background: Individualized pain therapy conforms to the concept of precision medicine and contributes to adequate pain management after surgery. Preoperative biomarkers associated with postoperative pain may instruct anesthesiologists to improve personalized suitable analgesia. Therefore, it is essential to explore the association between preoperative proteins and postoperative acute pain using the proteomics platform. Methods: In this study, the 24 hours postoperative sufentanil consumption of 80 male patients with gastric cancer was ranked. Patients with sufentanil consumption in the lowest 12% were included in the sufentanil low consumption group, while patients with sufentanil consumption in the highest 12% were included in the sufentanil high consumption group. The secretion of serum proteins in both groups was analyzed using label-free proteomics technology. The results were validated by ELISA. Results: Proteomics identified 29 proteins that were significantly differentially expressed between groups. ELISA confirmed that secretion of TNC and IGFBP2 was down-regulated in the SLC group. The differential proteins were mainly extracellular and were involved in several terms, including calcium ion binding, laminin-1 binding, and so on. Pathway analysis showed that they were mainly enriched in focal adhesion and extracellular matrix-receptor interaction. The protein-protein interaction network analysis showed 22 proteins that interacted with other proteins. F13B had the strongest correlation with sufentanil consumption and its AUC value was 0.859. Conclusions: Several differential proteins are associated with postoperative acute pain and are involved in ECM-related processes, inflammation, and blood coagulation cascades. F13B may be a novel marker for postoperative acute pain. Our results may benefit postoperative pain management.


Assuntos
Dor Aguda , Neoplasias Gástricas , Humanos , Masculino , Sufentanil , Neoplasias Gástricas/cirurgia , Proteômica , Analgesia Controlada pelo Paciente/métodos , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/terapia
9.
BMC Surg ; 23(1): 74, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997940

RESUMO

BACKGROUND: This prospective randomized controlled study was designed to evaluate the effect of S-ketamine with sufentanil given intraoperatively and postoperatively on recovery of gastrointestinal (GI) function and postoperative pain in gynecological patients undergoing open abdomen surgery. METHODS: One hundred gynecological patients undergoing open abdomen surgery were randomized into an S-ketamine group (group S) or placebo group (0.9% saline; group C). Anesthesia was maintained with S-ketamine, sevoflurane, and remifentanil-propofol target-controlled infusion in group S and with sevoflurane and remifentanil-propofol target-controlled infusion in group C. All patients were connected to patient-controlled intravenous analgesia (PCIA) pump at the end of the surgery with sufentanil, ketorolac tromethamine, and tropisetron in group C and additional S-ketamine in group S. The primary outcome was the time of first postoperative flatus, and the secondary outcome was postoperative pain score of patients. Postoperative sufentanil consumption within the first postoperative 24 h and adverse events such as nausea and vomiting were recorded. RESULTS: The time of first postoperative flatus in group S was significantly shorter (mean ± SD, 50.3 ± 13.5 h) than that in group C (mean ± SD, 56.5 ± 14.3 h, p = 0.042). The patient's visual analog scale (VAS) pain score 24 h after surgery at rest was significantly lower in group S than in group C (p = 0.032). There were no differences in sufentanil consumption within the first postoperative 24 h, postoperative complications related to PCIA between the two groups. CONCLUSIONS: S-ketamine accelerated postoperative GI recovery and reduced 24 h postoperative pain in patients undergoing open gynecological surgery. TRIAL REGISTRATION: ChiCTR2200055180. Registered on 02/01/2022. It is a secondary analysis of the same trial.


Assuntos
Propofol , Sufentanil , Humanos , Sufentanil/uso terapêutico , Sufentanil/efeitos adversos , Remifentanil/uso terapêutico , Propofol/uso terapêutico , Sevoflurano/uso terapêutico , Estudos Prospectivos , Flatulência/induzido quimicamente , Flatulência/tratamento farmacológico , Dor Pós-Operatória/tratamento farmacológico
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 8-16, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36765470

RESUMO

OBJECTIVE: To explore the expression pattern and clinical significance of Integral membrane protein 2A(ITM2A) in drug resistant patients with chronic myeloid leukemia (CML). METHODS: The expression of ITM2A in CML was evaluated by qRT-PCR, Western blot and immunocytochemistry. In order to understand the possible biological effects of ITM2A, apoptosis, cell cycle and myeloid differentiation antigen expression of CML cells were detected by flow cytometry after over-expression of ITM2A. The nuderlying molecular mechanism of its biological effect was explored. RESULTS: The expression of ITM2A in bone marrow of CML resistant patients was significantly lower than that of sensitive patients and healthy donors(P<0.05). The CML resistant strain cell K562R was successfully constructed in vitro. The expression of ITM2A in the resistant strain was significantly lower than that in the sensitive strain(P<0.05). Overexpression of ITM2A in K562R cells increased the sensitivity of K562R cells to imatinib and blocked the cell cycle in G2 phase(P<0.05), but did not affect myeloid differentiation. Mechanistically, up-regulation of ITM2A reduced phosphorylation in ERK signaling (P<0.05). CONCLUSION: The expression of ITM2A was low in patients with drug resistance of CML, and the low expression of ITM2A may be the key factor of imatinib resistance in CML.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Antineoplásicos/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Transdução de Sinais
11.
Cell Death Dis ; 14(2): 98, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759599

RESUMO

During interphase, the newly duplicated pairs of centrosomes are held together by a centrosome linker, and the centrosome separation needs the disruption of this linker to induce the duplicated centrosomes separating into two distinct microtubule organization centers. The mechanism of regulating centrosome separation is however poorly understood. Here, we demonstrated that the phosphorylation of PHF5A at Y36 by the TrkA-ERK1/2-ABL1 cascade plays a critical role in regulating centrosome separation. PHF5A, a well-characterized spliceosome component, is enriched in the centrosome. The pY36-PHF5A promotes the interaction between CEP250 and Nek2A in a spliceosomal-independent manner, which leads to premature centrosome separation. Furthermore, the unmatured centrosome remodels the microtubule and subsequently regulates cell proliferation and migration. Importantly, we found that the phosphorylation cascade of TrkA-ERK1/2-ABL1-PHF5A is hyper-regulated in medulloblastoma. The inhibition of this cascade can induce senescence and restrict the proliferation of medulloblastoma. Our findings on this phosphorylation cascade in regulating centrosome separation could provide a series of potential targets for restricting the progress of medulloblastoma.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Sistema de Sinalização das MAP Quinases , Meduloblastoma/metabolismo , Células HeLa , Centrossomo/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Microtúbulos/metabolismo , Neoplasias Cerebelares/metabolismo , Autoantígenos/metabolismo , Transativadores/metabolismo
12.
J Transl Med ; 20(1): 394, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058936

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Given the high relapse rate, more effective treatments are needed to improve clinical outcomes. We previously demonstrated that heme oxygenase 1 (HO1) is overexpressed in AML, while the functional roles of HO1 remain unclear. METHODS: Bioinformatics analysis and flow cytometry were conducted to assess the association between HO1 levels and immune cells or immune checkpoint/ligand molecules in AML patients. Primary natural killer (NK) cells were purified and subsequently co-cultured in vitro with transduced AML cells to determine the effects of HO1 expression on NK cell functions. AML mice models were established to investigate the effects of HO1 expression on cytotoxic effects of NK cells in vivo. The molecular mechanism was studied by flow cytometry, quantitative real-time PCR (qRT-PCR), western blotting, and immunoprecipitation. RESULTS: Bioinformatics analysis indicated a correlation between HO1 expression and the AML immune microenvironment. The present study findings indicated that HO1 specifically downregulates the expression of CD48, a ligand of the NK cell-activating receptor 2B4, thus decreasing the cytotoxic effect of NK cells. HO1 overexpression promoted tumor growth and inhibited the cytotoxic effect of NK cells in the AML mice model. Mechanistic investigations found that HO1 directly interacted with Sirt1 and increased its expression and deacetylase activity. With the overexpression of HO1, increased Sirt1 in AML cells enabled histone H3K27 deacetylation to suppress CD48 transcription and expression. Administration of Sirt1 inhibitor restored the expression of CD48. CONCLUSIONS: Collectively, HO1 promotes NK cell dysfunction in AML. Therefore, restoring NK cell function by inhibiting HO1 activity is a potential immunotherapeutic approach against AML.


Assuntos
Heme Oxigenase-1 , Evasão da Resposta Imune , Leucemia Mieloide Aguda , Animais , Heme Oxigenase-1/metabolismo , Células Matadoras Naturais , Leucemia Mieloide Aguda/metabolismo , Ligantes , Camundongos , Sirtuína 1/metabolismo , Microambiente Tumoral
14.
Cancer Gene Ther ; 29(11): 1773-1790, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35840666

RESUMO

Drug resistance is a key factor in the treatment failure of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) plays a crucial role in tumor chemotherapy resistance. However, the potential mechanism of Nrf2 regulating DNA mismatch repair (MMR) pathway to mediate gene-instability drug resistance in AML is still unclear. Here, it was found that Nrf2 expression was closely related to the disease progression of AML as well as highly expressed in AML patients with poor prognostic gene mutations. Meanwhile, it was also found that the expression of Nrf2 was significantly negatively correlated with DNA MMR gene replication factor C4 (RFC4) in AML. CHIP analysis combined with luciferase reporter gene results further showed that Nrf2 may inhibit the expression of RFC4 by its interaction with the RFC4 promoter. In vitro and vivo experiments showed that the overexpression of Nrf2 decreased the killing effect of chemotherapy drug cytarabine (Ara-C) on leukemia cells and inhibited the expression of RFC4. Mechanistically, The result that Nrf2-RFC4 axis mediated AML genetic instability drug resistance might be received by activating the JNK/NF-κB signaling pathway. Taken together, these findings may provide a new idea for improving AML drug resistance.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/farmacologia , Citarabina/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , NF-kappa B/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
15.
Front Oncol ; 12: 876556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646695

RESUMO

Uncontrolled proliferation is an important cancer cell biomarker, which plays a critical role in carcinogenesis, progression and development of resistance to chemotherapy. An improved understanding of novel genes modulating cancer cell proliferation and mechanism will help develop new therapeutic strategies. The nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor, decreases apoptosis when its expression is upregulated. However, the relationship between Nrf2 and Vincristine (VCR) chemotherapy resistance in B-cell acute lymphoblastic leukemia (B-ALL) is not yet established. Our results showed that Nrf2 levels could sufficiently modulate the sensitivity of B-ALL cells to VCRby regulating an apoptotic protein, i.e., the Bcl-2 agonist of cell death (BAD). Chemotherapeutic agents used for the treatment of B-ALL induced Nrf2 overactivation and PI3K-AKT pathway activation in the cells, independent of the resistance to chemotherapy; thus, a potential resistance loop during treatment for B-ALL with a drug combination is established. Therefore, B-ALL patients with a high expression of Nrf2 might mean induction chemotherapy with VCR effective little.

16.
Oncogene ; 41(29): 3694-3704, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732801

RESUMO

Ewing sarcoma breakpoint region 1 (EWSR1) is a member of FET (FUS/EWSR1/TAF15) RNA-binding family of proteins. The Ewing sarcoma oncoprotein EWS-FLI1 has been extensively studied, while much less is known about EWSR1 itself, especially the potential role of EWSR1 in response to DNA damage. Here, we found that UV irradiation induces acetylation of EWSR1, which is required for its nucleoli translocation. We identified K423, K432, K438, K640, and K643 as the major acetylation sites, p300/CBP and HDAC3/HDAC10 as the major acetyltransferases and deacetylases, respectively. Mechanically, UV-induced EWSR1 acetylation repressed its interaction with spliceosomal component U1C, which caused abnormal splicing of CHK2, suppressing the activity of CHK2 in response to UV irradiation. Taken together, our findings uncover acetylation as a novel regulatory modification of EWSR1, and is essential for its function in DNA damage response.


Assuntos
Quinase do Ponto de Checagem 2 , Dano ao DNA , Proteína EWS de Ligação a RNA , Sarcoma de Ewing , Acetilação , Processamento Alternativo/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Proteínas de Fusão Oncogênica/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética
17.
Ann Transl Med ; 9(1): 33, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553326

RESUMO

BACKGROUND: Although programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) checkpoint inhibitors have shown prominent efficacy for treatment of advanced lung cancer, the outcomes of metastatic lung cancer remain poor throughout the world. Although progression-free survival (PFS) and overall survival (OS) have improved in the first- and second-line therapy settings for advanced lung cancer, the response rates to PD-1/PD-L1 inhibition range from 20% to 40%. Furthermore, patients may be at risk for immune-related adverse events (irAEs); hence, appropriate patient selection is crucial. This study aimed to identify a panel of plasma cytokines representing prognostic and predictive biomarkers of the response to anti-PD-1/PD-L1 treatment. METHODS: We prospectively studied 32 lung cancer patients who received anti-PD-1/PD-L1 antibody immunotherapy. Plasma cytokines in peripheral blood samples were evaluated and analyzed using flow cytometry at the time of diagnosis and at 2 months after the initiation of PD-1/PD-L1 inhibition. RESULTS: The baseline plasma concentrations of interleukin-18 (IL-18) and C-X-C motif chemokine ligand 10 (CXCL10) were correlated with the degree of tumor response. Moreover, the magnitude of plasma IL-18 and CXCL10 level fluctuations were correlated significantly with the objective tumor response to anti-PD-1/PD-L1 immunotherapy, and patients with high CXCL10 expression had significantly shorter PFS than those with low CXCL10 expression. A strong positive correlation between the fluctuation of IL-18 and interleukin-8 (IL-8) levels was detected, as was a negative correlation between the fluctuation of IL-18 and CXCL10 levels. The level of plasma C-C motif chemokine ligand 5 (CCL5) was significantly higher in patients with irAEs than in those without irAEs. CONCLUSIONS: Plasma cytokines are related to the clinical efficacy of PD-1/PD-L1 inhibitors. IL-18 and CXCL10 are potential predictive markers for anti-PD-1/PD-L1 therapy in lung cancer patients and may play an important role in selecting patients who would benefit from PD-1/PD-L1 inhibitors.

18.
Int Immunopharmacol ; 80: 106008, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31978797

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is immune to the chemotherapy-induced apoptosis as a result of the protection of bone marrow mesenchymal stromal cells (BMSCs). However, the precise underlying mechanism of such protection remains unclear so far. In this experiment, protein tyrosine phosphatase 2 (Shp2), which was encoded by the PTPN11 gene, was highly expressed in BMSCs of the newly diagnosed and the recurrent B-ALL patients. The plasmid-induced (including Shp2 E76K) Shp2 activation in BMSCs (Shp2-activated BMSCs) markedly increased the BMSCs-mediated resistance of leukemia cells both in vitro and in vivo. Additionally, studies in vitro suggested that, the expression of vascular cell adhesion molecule 1 (VCAM-1) was markedly up-regulated in Shp2-activated BMSCs, and VCAM-1 expression in BMSCs of B-ALL patients was negatively correlated with Shp2 expression. Down-regulation of VCAM-1 in BMSCs using siRNA reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs. As for the molecular mechanism, the PI3K/AKT pathway mediated the regulation of VCAM-1 by Shp2. Blocking the very late antigen-4 (VLA-4) by antibodies in CCRF-SB cells dramatically reversed the resistance of CCRF-SB cells mediated by the Shp2-activated BMSCs, and decreased the adhesion effects of both CCRF-SB cells and BMSCs. In conclusion, Shp2 activation in BMSCs up-regulates VCAM-1 expression through increasing the PI3K/AKT phosphorylation level, and targeting the VCAM-1/VLA-4 signaling may serve as a clinically relevant mechanism to overcome the BMSCs-mediated chemoresistance of B-ALL cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Mesenquimais/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Vincristina/farmacologia , Adolescente , Adulto , Animais , Medula Óssea/patologia , Linhagem Celular Tumoral , Criança , Pré-Escolar , Humanos , Integrina alfa4beta1/metabolismo , Camundongos , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Microambiente Tumoral , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Vincristina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
19.
RSC Adv ; 10(2): 828-844, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35494464

RESUMO

Imatinib (IM) is utilized for targeting the BCR-ABL fusion protein and as such, chronic myeloid leukemia (CML) is considered to be a curable disorder for which patients can achieve a long survival. However, 15-20% CML cases end up with IM resistance that will develop into the accelerated stage and eventually the blast crisis, thereby restricting the treatment choices and giving rise to a dismal survival rate. Histone deacetylases (HDACs) have been identified to modulate the oncogene as well as tumor suppressor gene activities, and they play crucial parts in tumorigenesis. It is found recently that IM combined with HDAC inhibitors (HDACi) can serve as a promising means of overcoming IM resistance in CML cases. Santacruzamate A (CAY10683) has been developed as one of the selective and powerful HDACi to resist HDAC2. Therefore, in this study, we aimed to examine whether CAY10683 combined with IM could serve as the candidate antitumor treatment for CML cases with IM resistance. The influences of CAY10683 combined with IM on the cell cycle arrest, apoptosis, and viability of CML cells with IM resistance were investigated, and it was discovered that the combined treatment exerted synergistic effects on managing the IM resistance. Moreover, further studies indicated that CAY10683 combined with IM mainly exerted synergistic effects through inhibiting HDAC2 in K562-R and LAMA84-R cells with IM resistance. Besides, the PI3K/Akt signal transduction pathway was found to mediate the HDAC2 regulation of CML cells with IM resistance. Eventually, it was also discovered, based on the xenograft mouse model, that the combined treatment dramatically suppressed CML proliferation in vivo. To sum up, findings in the current study indicate that CAY10683 combined with IM can be potentially used as the candidate treatment for CML with IM resistance.

20.
Anticancer Drugs ; 31(2): 158-168, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31584454

RESUMO

Although arsenic trioxide (ATO) treatment has transformed acute promyelocytic leukemia (APL) from the most fatal to the most curable hematological cancer, many high-risk APL patients who fail to achieve a complete molecular remission or relapse become resistant to ATO. Herein, we report that 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) exhibits specific anticancer effects on APL and ATO-resistant APL in vitro and in vivo, while showing negligible cytotoxic effect on the noncancerous cells including normal CD34 cells and bone marrow mesenchymal stem cells from APL patients. Further mechanistic studies show that CUDC-101 triggers caspase-dependent degradation of the promyelocytic leukemia-retinoic acid receptor alpha fusion protein. As a result, APL and ATO-resistant APL cells undergo apoptosis upon CUDC-101 treatment and this apoptosis-inducing effect is even stronger than that of ATO. Finally, using a xenograft mouse model, we demonstrated that CUDC-101 significantly represses leukemia development in vivo. In conclusion, these results suggested that CUDC-101 can serve as a potential candidate drug for APL, particularly for ATO-resistant APL.


Assuntos
Trióxido de Arsênio/farmacologia , Caspases/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Ácidos Hidroxâmicos/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Quinazolinas/farmacologia , Receptor alfa de Ácido Retinoico/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais , Proliferação de Células , Feminino , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...