Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844534

RESUMO

Understanding the shared and divergent mechanisms across antidepressant (AD) classes and probiotics is critical for improving treatment for mood disorders. Here we examine the transcriptomic effects of bupropion (NDRI), desipramine (SNRI), fluoxetine (SSRI) and a probiotic formulation (Lacidofil®) on 10 regions across the mammalian brain. These treatments massively alter gene expression (on average, 2211 differentially expressed genes (DEGs) per region-treatment combination), highlighting the biological complexity of AD and probiotic action. Intersection of DEG sets against neuropsychiatric GWAS loci, sex-specific transcriptomic portraits of major depressive disorder (MDD), and mouse models of stress and depression reveals significant similarities and differences across treatments. Interestingly, molecular responses in the infralimbic cortex, basolateral amygdala and locus coeruleus are region-specific and highly similar across treatments, whilst responses in the Raphe, medial preoptic area, cingulate cortex, prelimbic cortex and ventral dentate gyrus are predominantly treatment-specific. Mechanistically, ADs concordantly downregulate immune pathways in the amygdala and ventral dentate gyrus. In contrast, protein synthesis, metabolism and synaptic signaling pathways are axes of variability among treatments. We use spatial transcriptomics to further delineate layer-specific molecular pathways and DEGs within the prefrontal cortex. Our study reveals complex AD and probiotics action on the mammalian brain and identifies treatment-specific cellular processes and gene targets associated with mood disorders.

2.
Chin J Traumatol ; 27(2): 114-120, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37311687

RESUMO

PURPOSE: Ischemia and hypoxia are the main factors limiting limb replantation and transplantation. Static cold storage (SCS), a common preservation method for tissues and organs, can only prolong limb ischemia time to 4 - 6 h. The normothermic machine perfusion (NMP) is a promising method for the preservation of tissues and organs, which can extend the preservation time in vitro by providing continuous oxygen and nutrients. This study aimed to evaluate the difference in the efficacy of the 2 limb preservation methods. METHODS: The 6 forelimbs from beagle dogs were divided into 2 groups. In the SCS group (n = 3), the limbs were preserved in a sterile refrigerator at 4 °C for 24 h, and in the NMP group (n = 3), the perfusate prepared with autologous blood was used for the oxygenated machine perfusion at physiological temperature for 24 h, and the solution was changed every 6 h. The effects of limb storage were evaluated by weight gain, perfusate biochemical analysis, enzyme-linked immunosorbent assay, and histological analysis. All statistical analyses and graphs were performed using GraphPad Prism 9.0 one-way or two-way analysis of variance. The p value of less than 0.05 was considered to indicate statistical significance. RESULTS: In the NMP group, the weight gained percentage was 11.72% ± 4.06%; the hypoxia-inducible factor-1α contents showed no significant changes; the shape of muscle fibers was normal; the gap between muscle fibers slightly increased, showing the intercellular distance of (30.19 ± 2.83) µm; and the vascular α-smooth muscle actin (α-SMA) contents were lower than those in the normal blood vessels. The creatine kinase level in the perfusate of the NMP group increased from the beginning of perfusion, decreased after each perfusate change, and remained stable at the end of perfusion showing a peak level of 4097.6 U/L. The lactate dehydrogenase level of the NMP group increased near the end of perfusion and reached the peak level of 374.4 U/L. In the SCS group, the percentage of weight gain was 0.18% ± 0.10%, and the contents of hypoxia-inducible factor-1α increased gradually and reached the maximum level of (164.85 ± 20.75) pg/mL at the end of the experiment. The muscle fibers lost their normal shape and the gap between muscle fibers increased, showing an intercellular distance of (41.66 ± 5.38) µm. The contents of vascular α-SMA were much lower in the SCS group as compared to normal blood vessels. CONCLUSIONS: NMP caused lesser muscle damage and contained more vascular α-SMA as compared to SCS. This study demonstrated that NMP of the amputated limb with perfusate solution based on autologous blood could maintain the physiological activities of the limb for at least 24 h.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Preservação de Órgãos , Animais , Cães , Temperatura , Preservação de Órgãos/métodos , Perfusão/métodos , Extremidade Superior , Membro Anterior , Aumento de Peso , Fígado
3.
EBioMedicine ; 95: 104749, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549631

RESUMO

BACKGROUND: There are sex-specific differences in the prevalence, symptomology and course of psychiatric disorders. However, preclinical models have primarily used males, such that the molecular mechanisms underlying sex-specific differences in psychiatric disorders are not well established. METHODS: In this study, we compared transcriptome-wide gene expression profiles in male and female rats within the corticolimbic system, including the cingulate cortex, nucleus accumbens medial shell (NAcS), ventral dentate gyrus and the basolateral amygdala (n = 22-24 per group/region). FINDINGS: We found over 3000 differentially expressed genes (DEGs) in the NAcS between males and females. Of these DEGs in the NAcS, 303 showed sex-dependent conservation DEGs in humans and were significantly enriched for gene ontology terms related to blood vessel morphogenesis and regulation of cell migration. Single nuclei RNA sequencing in the NAcS of male and female rats identified widespread sex-dependent expression, with genes upregulated in females showing a notable enrichment for synaptic function. Female upregulated genes in astrocytes, Drd3+MSNs and oligodendrocyte were also enriched in several psychiatric genome-wide association studies (GWAS). INTERPRETATION: Our data provide comprehensive evidence of sex- and cell-specific molecular profiles in the NAcS. Importantly these differences associate with anxiety, bipolar disorder, schizophrenia, and cross-disorder, suggesting an intrinsic molecular basis for sex-based differences in psychiatric disorders that strongly implicates the NAcS. FUNDING: This work was supported by funding from the Hope for Depression Research Foundation (MJM).


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Mentais , Humanos , Masculino , Feminino , Ratos , Animais , Encéfalo/metabolismo , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transcriptoma , Análise de Sequência de RNA
4.
Mol Psychiatry ; 27(11): 4510-4525, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36056172

RESUMO

Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.


Assuntos
Montagem e Desmontagem da Cromatina , Fluoxetina , Humanos , Antidepressivos/farmacologia , Encéfalo/metabolismo , Metabolismo Energético/genética , Fluoxetina/farmacologia , Fluoxetina/metabolismo , Mamíferos , Multiômica , Animais
5.
Neuropsychopharmacology ; 47(5): 987-999, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34848858

RESUMO

The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.


Assuntos
Corticosterona , Estresse Psicológico , Animais , Ansiedade/genética , Corticosterona/farmacologia , Suscetibilidade a Doenças , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/genética
6.
Psychoneuroendocrinology ; 136: 105600, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839083

RESUMO

Childhood abuse significantly increases the lifetime risk of negative mental health outcomes. The oxytocinergic system, which plays a role in complex social and emotional behaviors, has been shown to be sensitive to early-life experiences. While previous studies have investigated the relationship between early-life adversity and oxytocin, they did so with peripheral samples. We, therefore, aimed to characterize the relationship between early-life adversity and oxytocin receptor (OXTR) expression in the brain, using post-mortem human samples, as well as a rodent model of naturally occurring variation in early-life environment. Focusing on the dorsal anterior cingulate cortex, we compared OXTR expression and epigenetic regulation between MDD suicides with (N = 26) and without history of childhood abuse (N = 24), as well as psychiatrically healthy controls (N = 23). We also compared Oxtr expression in the cingulate cortex of adult rats raised by dams displaying high (N = 13) and low levels (N = 12) of licking and grooming (LG) behavior. Overall, our results indicate that childhood abuse associates with an upregulation of OXTR expression, and that similarly, this relationship is also observed in the cingulate cortex of adult rats raised by low-LG dams. Additionally, we found an effect of rs53576 genotype on expression, showing that carriers of the A variant also show upregulated OXTR expression. The effects of early-life adversity and rs53576 genotype on OXTR expression are, however, not explained by differences in DNA methylation within and around the MT region of the OXTR gene.


Assuntos
Receptores de Ocitocina , Suicídio , Animais , Criança , Epigênese Genética/genética , Giro do Cíngulo/metabolismo , Humanos , Ocitocina/metabolismo , Polimorfismo de Nucleotídeo Único , Ratos , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
7.
Mol Neurobiol ; 57(1): 290-301, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31327126

RESUMO

BDNF-oxytocin interactions in the brain are implicated in mammalian maternal behavior. We found that BDNF gene expression is increased in the hippocampus of rat mothers that show increased pup licking/grooming (high LG mothers) compared to low LG mothers. High LG mothers also showed increased BDNF protein levels in the nucleus accumbens (nAcc). Immunoneutralization of BDNF in the nAcc eliminated the differences in pup LG between high and low LG mothers. Oxytocin antagonist in the ventral hippocampus significantly decreased the frequency of maternal LG behavior. Oxytocin antagonist significantly prevented the oxytocin-induced BDNF gene expression in primary hippocampal cell cultures. We suggest that oxytocin-induced regulation of BDNF in the nAcc provides a neuroendocrine basis for both individual differences in maternal behavior and resilience to the stress of reproduction in female mammals.


Assuntos
Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Núcleo Accumbens/metabolismo , Recompensa , Comportamento Social , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Regulação da Expressão Gênica , Hipocampo/metabolismo , Comportamento Materno , Ocitocina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Long-Evans
8.
Nat Commun ; 9(1): 1116, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549264

RESUMO

Most people exposed to stress do not develop depression. Animal models have shown that stress resilience is an active state that requires broad transcriptional adaptations, but how this homeostatic process is regulated remains poorly understood. In this study, we analyze upstream regulators of genes differentially expressed after chronic social defeat stress. We identify estrogen receptor α (ERα) as the top regulator of pro-resilient transcriptional changes in the nucleus accumbens (NAc), a key brain reward region implicated in depression. In accordance with these findings, nuclear ERα protein levels are altered by stress in male and female mice. Further, overexpression of ERα in the NAc promotes stress resilience in both sexes. Subsequent RNA-sequencing reveals that ERα overexpression in NAc reproduces the transcriptional signature of resilience in male, but not female, mice. These results indicate that NAc ERα is an important regulator of pro-resilient transcriptional changes, but with sex-specific downstream targets.


Assuntos
Adaptação Psicológica/fisiologia , Comportamento Animal/fisiologia , Depressão/fisiopatologia , Receptor alfa de Estrogênio/metabolismo , Núcleo Accumbens/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fatores Sexuais , Transcriptoma/genética
9.
Nat Commun ; 9(1): 298, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352183

RESUMO

Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.


Assuntos
Condicionamento Psicológico/fisiologia , Giro Denteado/metabolismo , Epigênese Genética , Interação Gene-Ambiente , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Transcriptoma , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , DNA/genética , DNA/metabolismo , Metilação de DNA , Giro Denteado/anatomia & histologia , Giro Denteado/diagnóstico por imagem , Giro Denteado/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Ligação Proteica
10.
Am J Psychiatry ; 174(12): 1185-1194, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28750583

RESUMO

OBJECTIVE: Child abuse has devastating and long-lasting consequences, considerably increasing the lifetime risk of negative mental health outcomes such as depression and suicide. Yet the neurobiological processes underlying this heightened vulnerability remain poorly understood. The authors investigated the hypothesis that epigenetic, transcriptomic, and cellular adaptations may occur in the anterior cingulate cortex as a function of child abuse. METHOD: Postmortem brain samples from human subjects (N=78) and from a rodent model of the impact of early-life environment (N=24) were analyzed. The human samples were from depressed individuals who died by suicide, with (N=27) or without (N=25) a history of severe child abuse, as well as from psychiatrically healthy control subjects (N=26). Genome-wide DNA methylation and gene expression were investigated using reduced representation bisulfite sequencing and RNA sequencing, respectively. Cell type-specific validation of differentially methylated loci was performed after fluorescence-activated cell sorting of oligodendrocyte and neuronal nuclei. Differential gene expression was validated using NanoString technology. Finally, oligodendrocytes and myelinated axons were analyzed using stereology and coherent anti-Stokes Raman scattering microscopy. RESULTS: A history of child abuse was associated with cell type-specific changes in DNA methylation of oligodendrocyte genes and a global impairment of the myelin-related transcriptional program. These effects were absent in the depressed suicide completers with no history of child abuse, and they were strongly correlated with myelin gene expression changes observed in the animal model. Furthermore, a selective and significant reduction in the thickness of myelin sheaths around small-diameter axons was observed in individuals with history of child abuse. CONCLUSIONS: The results suggest that child abuse, in part through epigenetic reprogramming of oligodendrocytes, may lastingly disrupt cortical myelination, a fundamental feature of cerebral connectivity.


Assuntos
Sobreviventes Adultos de Maus-Tratos Infantis , Metilação de DNA , Expressão Gênica , Giro do Cíngulo/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Animais , Axônios/patologia , Estudos de Casos e Controles , Contagem de Células , Epigênese Genética , Humanos , Bainha de Mielina/ultraestrutura , Ratos , Transcrição Gênica
11.
Brain Behav Immun ; 65: 239-250, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28502880

RESUMO

Early life adversity increases the risk for later infection. The febrile response is a potent mechanism to combat infection. We found that variations in maternal care influence the febrile response to 50µg/kg lipopolysaccharide (LPS) challenge in adult male rats. Offspring from low-licking/grooming (LG) mothers had an increased febrile response compared to offspring from high-LG mothers challenged with LPS. Low-LG offspring had reduced plasma IL-6 at one and two hours post challenge compared to high-LG offspring. IL-6 gene expression in the anterior hypothalamus was induced following LPS challenge in low-LG offspring but not in high-LG offspring at two hours post challenge. Occupancy of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) to the IL-6 promoter region in the anterior hypothalamus was greater in low-LG offspring treated with LPS than in high-LG offspring. These findings suggest greater activation of thermoregulatory neurons in the anterior hypothalamus of low-LG compared to high-LG offspring following LPS challenge. Low-LG offspring had greater plasma corticosterone levels following LPS challenge and they had enhanced glucocorticoid receptors (GR) in the spleen compared to high-LG offspring. Enhanced glucocorticoids and glucocorticoid receptor sensitivity associated with reduced IL-6 induction early post challenge in low-LG offspring. Challenge with RU-486 prior to LPS challenge eliminated differences in the febrile response between offspring of high and low-LG mothers. Individual differences in GR sensitivity may modulate differences in the febrile response to LPS challenge, exerting a long-term influence on the capacity to recover from infection.


Assuntos
Febre/fisiopatologia , Comportamento Materno/fisiologia , Receptores de Glucocorticoides/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Temperatura Corporal/efeitos dos fármacos , Corticosterona/farmacologia , Feminino , Febre/induzido quimicamente , Febre/metabolismo , Glucocorticoides/farmacologia , Lipopolissacarídeos , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Long-Evans , Estresse Psicológico
12.
Behav Brain Res ; 326: 22-32, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28259675

RESUMO

The medial preoptic area (MPOA) is implicated in the expression of maternal behavior including the frequency of pup licking/grooming (LG) in the rat. Cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB) is a transcription factor that regulates the expression of many genes. We found that lactating rats that are more maternal towards their pups showing increased licking/grooming (i.e. high-LG mothers) had increased levels of phosphorylated CREB (pCREB) in the MPOA following a nursing bout and they displayed a reduced population of greater dendritic complexity index (DCI) neurons compared to less maternal rats showing decreased licking/grooming (i.e. low-LG mothers). CREB overexpression in MPOA neuronal cultures associated with a decrease in dendritic complexity and an increase in the expression of Rem2 and brain-derived neurotrophic factor (BDNF), genes implicated in dendritic pruning. While there were no differences in Rem2 expression in virgin high and low-LG female rats, Rem2 was significantly increased in the MPOA of high-LG compared to low-LG lactating rats. CREB activity in the MPOA associates with maternal behavior and reduced dendritic complexity possibly by increasing Rem2 expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Dendritos , Expressão Gênica , Asseio Animal/fisiologia , Lactação/fisiologia , Comportamento Materno/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Área Pré-Óptica/anatomia & histologia , Área Pré-Óptica/metabolismo , Animais , Técnicas de Cultura de Células , Feminino , Proteínas Monoméricas de Ligação ao GTP/genética , Ratos , Ratos Long-Evans
13.
Philos Trans R Soc Lond B Biol Sci ; 369(1652)2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25135974

RESUMO

Variations in maternal care in the rat influence the epigenetic state and transcriptional activity of glucocorticoid receptor (GR) gene in the hippocampus. The mechanisms underlying this maternal effect remained to be defined, including the nature of the relevant maternally regulated intracellular signalling pathways. We show here that increased maternal licking/grooming (LG), which stably enhances hippocampal GR expression, paradoxically increases hippocampal expression of the methyl-CpG binding domain protein-2 (MBD2) and MBD2 binding to the exon 17 GR promoter. Knockdown experiments of MBD2 in hippocampal primary cell culture show that MBD2 is required for activation of exon 17 GR promoter. Ectopic co-expression of nerve growth factor-inducible protein A (NGFI-A) with MBD2 in HEK 293 cells with site-directed mutagenesis of the NGFI-A response element within the methylated exon 17 GR promoter supports the hypothesis that MBD2 collaborates with NGFI-A in binding and activation of this promoter. These data suggest a possible mechanism linking signalling pathways, which are activated by behavioural stimuli and activation of target genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Comportamento Materno/fisiologia , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Animais , Western Blotting , Imunoprecipitação da Cromatina , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Hipocampo/metabolismo , Humanos , Hibridização In Situ , Mutagênese Sítio-Dirigida , Ratos , Ratos Long-Evans , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Ativação Transcricional/genética
14.
Neuropsychopharmacology ; 38(1): 111-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22968814

RESUMO

Parental care influences development across mammals. In humans such influences include effects on phenotypes, such as stress reactivity, which determine individual differences in the vulnerability for affective disorders. Thus, the adult offspring of rat mothers that show an increased frequency of pup licking/grooming (ie, high LG mothers) show increased hippocampal glucocorticoid receptor (GR) expression and more modest hypothalamic-pituitary-adrenal responses to stress compared with the offspring of low LG mothers. In humans, childhood maltreatment associates decreased hippocampal GR expression and increased stress responses in adulthood. We review the evidence suggesting that such effects are mediated by epigenetic mechanisms, including DNA methylation and hydroxymethylation across GR promoter regions. We also present new findings revealing associated histone post-translational modifications of a critical GR promoter in rat hippocampus. Taken together these existing evidences are consistent with the idea that parental influences establish stable phenotypic variation in the offspring through effects on intracellular signaling pathways that regulate the epigenetic state and function of specific regions of the genome.


Assuntos
Epigênese Genética/fisiologia , Regulação da Expressão Gênica , Hipocampo/fisiologia , Comportamento Materno/fisiologia , Receptores de Glucocorticoides/genética , Meio Social , Animais , Humanos , Comportamento Materno/psicologia , Ratos , Receptores de Glucocorticoides/biossíntese
15.
Proc Natl Acad Sci U S A ; 109 Suppl 2: 17200-7, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23045678

RESUMO

Variations in maternal care in the rat affect hippocampal morphology and function as well as performance on hippocampal-dependent tests of learning and memory in the offspring. Preliminary genome-wide analyses of gene transcription and DNA methylation of the molecular basis for such maternal effects suggested differences in the epigenetic state and transcriptional activity of the Grm1 gene in the rat as a function of maternal care. Grm1 encodes the type I metabotropic glutamate receptor (mGluR1), and we found increased mGluR1 mRNA and protein in hippocampus from the adult offspring of mothers showing an increased frequency of pup licking/grooming (i.e., high-LG mothers) that was associated with a decrease in the methylation of Grm1. ChIP assays showed increased levels of histone 3 lysine 9 acetylation and histone 3 lysine 4 trimethylation of Grm1 in hippocampus from the adult offspring of high-LG compared with low-LG mothers. These histone posttranslational modifications were highly correlated, and both associate inversely with DNA methylation and positively with transcription. Studies of mGluR1 function showed increased hippocampal mGluR1-induced long-term depression in the adult offspring of high-LG compared with low-LG mothers, as well as increased paired-pulse depression (PPD). PPD is an inhibitory feedback mechanism that prevents excessive glutamate release during high-frequency stimulation. The maternal effects on both long-term depression and PPD were eliminated by treatment with an mGluR1-selective antagonist. These findings suggest that variations in maternal care can influence hippocampal function and cognitive performance through the epigenetic regulation of genes implicated in glutamatergic synaptic signaling.


Assuntos
Hipocampo/fisiologia , Comportamento Materno/fisiologia , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Sequência de Bases , Comportamento Animal/fisiologia , DNA/genética , Metilação de DNA , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Masculino , Dados de Sequência Molecular , Gravidez , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
16.
Hippocampus ; 22(2): 255-66, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21240921

RESUMO

Maternal care in mammals is the prevailing environmental influence during perinatal development. The adult rat offspring of mothers exhibiting increased levels of pup licking/grooming (LG; High LG mothers), compared to those reared by Low LG dams, show increased hippocampal glucocorticoid receptor expression, complex dendritic tree structure, and an enhanced capacity for synaptic potentiation. However, these data were derived from studies using the total amount of maternal care directed toward the entire litter, thus ignoring possible within-litter variation. We show that the amount of LG received by individual pups within a litter varies considerably. Therefore, we questioned if the amount of LG received by individual pups correlates with and thus putatively predicts later hippocampal structure and function. To this end, LG-scores were determined during the first postnatal week for all pups in 32 litters and correlated with neuroendocrine and hippocampal parameters in young-adulthood. Pup LG-score positively correlated with the glucocorticoid receptor mRNA expression in the adult hippocampus. Moreover, the ability to induce synaptic potentiation in the dentate gyrus in vitro was enhanced in animals with high LG-scores. Structural plasticity correlated less reliably with LG-scores early in life and differed between sexes. Male offspring with high LG-scores displayed fewer newborn neurons, higher brain derived neurotrophic factor expression and tended to have more complex granule cell dendritic trees. We conclude that even moderate variations in early life environment have a major impact on adult hippocampal function. This principle could provide a mechanistic basis for individual differences in susceptibility to psychopathology.


Assuntos
Hipocampo/fisiologia , Comportamento Materno , Plasticidade Neuronal/fisiologia , Receptores de Glucocorticoides/biossíntese , Animais , Feminino , Hipocampo/citologia , Imuno-Histoquímica , Masculino , Neurogênese/fisiologia , Ratos , Ratos Long-Evans , Reação em Cadeia da Polimerase em Tempo Real , Transmissão Sináptica/fisiologia
17.
FEBS Lett ; 585(13): 2049-58, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21420958

RESUMO

Parental effects are a major source of phenotypic plasticity. Moreover, there is evidence from studies with a wide range of species that the relevant parental signals are influenced by the quality of the parental environment. The link between the quality of the environment and the nature of the parental signal is consistent with the idea that parental effects, whether direct or indirect, might serve to influence the phenotype of the offspring in a manner that is consistent with the prevailing environmental demands. In this review we explore recent studies from the field of 'environmental epigenetics' that suggest that (1) DNA methylation states are far more variable than once thought and that, at least within specific regions of the genome, there is evidence for both demethylation and remethylation in post-mitotic cells and (2) that such remodeling of DNA methylation can occur in response to environmentally-driven, intracellular signaling pathways. Thus, studies of variation in mother-offspring interactions in rodents suggest that parental signals operate during pre- and/or post-natal life to influence the DNA methylation state at specific regions of the genome leading to sustained changes in gene expression and function. We suggest that DNA methylation is a candidate mechanism for parental effects on phenotypic variation.


Assuntos
Meio Ambiente , Epigênese Genética/genética , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Epigenômica , Humanos , Neoplasias Hipotalâmicas/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
18.
J Neurosci ; 30(39): 13130-7, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20881131

RESUMO

Parenting and the early environment influence the risk for various psychopathologies. Studies in the rat suggest that variations in maternal care stably influence DNA methylation, gene expression, and neural function in the offspring. Maternal care affects neural development, including the GABAergic system, the function of which is linked to the pathophysiology of diseases including schizophrenia and depression. Postmortem studies of human schizophrenic brains have revealed decreased forebrain expression of glutamic acid decarboxylase 1 (GAD1) accompanied by increased methylation of a GAD1 promoter. We examined whether maternal care affects GAD1 promoter methylation in the hippocampus of adult male offspring of high and low pup licking/grooming (high-LG and low-LG) mothers. Compared with the offspring of low-LG mothers, those reared by high-LG dams showed enhanced hippocampal GAD1 mRNA expression, decreased cytosine methylation, and increased histone 3-lysine 9 acetylation (H3K9ac) of the GAD1 promoter. DNA methyltransferase 1 expression was significantly higher in the offspring of low- compared with high-LG mothers. Pup LG increases hippocampal serotonin (5-HT) and nerve growth factor-inducible factor A (NGFI-A) expression. Chromatin immunoprecipitation assays revealed enhanced NGFI-A association with and H3K9ac of the GAD1 promoter in the hippocampus of high-LG pups after a nursing bout. Treatment of hippocampal neuronal cultures with either 5-HT or an NGFI-A expression plasmid significantly increased GAD1 mRNA levels. The effect of 5-HT was blocked by a short interfering RNA targeting NGFI-A. These results suggest that maternal care influences the development of the GABA system by altering GAD1 promoter methylation levels through the maternally induced activation of NGFI-A and its association with the GAD1 promoter.


Assuntos
Metilação de DNA/genética , Glutamato Descarboxilase/genética , Hipocampo/metabolismo , Comportamento Materno/fisiologia , Animais , Células Cultivadas , Epigênese Genética , Glutamato Descarboxilase/biossíntese , Glutamato Descarboxilase/metabolismo , Hipocampo/enzimologia , Hipocampo/fisiopatologia , Masculino , Regiões Promotoras Genéticas/genética , Ratos , Ratos Long-Evans , Receptores de Glucocorticoides/genética , Ácido gama-Aminobutírico/fisiologia
19.
Endocrinology ; 151(5): 2276-86, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20228171

RESUMO

Variations in maternal behavior among lactating rats associate with differences in estrogen-oxytocin interactions in the medial preoptic area (mPOA) and in dopamine levels in the nucleus accumbens (nAcc). Thus, stable, individual differences in pup licking/grooming (LG) are abolished by oxytocin receptor blockade or treatments that eliminate differences in the nAcc dopamine signal. We provide novel evidence for a direct effect of oxytocin at the level of the ventral tegmental area (VTA) in the regulation of nAcc dopamine levels. Mothers that exhibit consistently increased pup LG (i.e. high LG mothers) by comparison with low LG mothers show increased oxytocin expression in the mPOA and the paraventricular nucleus of the hypothalamus and increased projections of oxytocin-positive cells from both mPOA and paraventricular nucleus of the hypothalamus to the VTA. Direct infusion of oxytocin into the VTA increased the dopamine signal in the nAcc. Finally, high compared with low LG mothers show greater increases in dopamine signal in the nAcc during bouts of pup LG, and this difference is abolished with infusions of an oxytocin receptor antagonist directly into the VTA. These studies reveal a direct effect of oxytocin on dopamine release within the mesocorticolimbic dopamine system and are consistent with previous reports of oxytocin-dopamine interactions in the establishment and maintenance of social bonds.


Assuntos
Dopamina/metabolismo , Asseio Animal/efeitos dos fármacos , Comportamento Materno/efeitos dos fármacos , Ocitocina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Feminino , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ocitócicos , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Ratos , Ratos Long-Evans , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
20.
Annu Rev Psychol ; 61: 439-66, C1-3, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19958180

RESUMO

There are numerous examples in psychology and other disciplines of the enduring effects of early experience on neural function. In this article, we review the emerging evidence for epigenetics as a candidate mechanism for these effects. Epigenetics refers to functionally relevant modifications to the genome that do not involve a change in nucleotide sequence. Such modifications include chemical marks that regulate the transcription of the genome. There is now evidence that environmental events can directly modify the epigenetic state of the genome. Thus studies with rodent models suggest that during both early development and in adult life, environmental signals can activate intracellular pathways that directly remodel the "epigenome," leading to changes in gene expression and neural function. These studies define a biological basis for the interplay between environmental signals and the genome in the regulation of individual differences in behavior, cognition, and physiology.


Assuntos
Metilação de DNA/genética , Meio Ambiente , Epigênese Genética/genética , Genoma/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Humanos , Comportamento Materno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...