Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 25(1): 694, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223504

RESUMO

BACKGROUND: Acute-phase reactions (APRs) are common among people treated for the first time with zoledronate (ZOL). The current view is that both the APRs caused by ZOL and its efficacy are related to the mevalonic acid pathway. However, the relationship between APRs and ZOL efficacy remains unclear. METHODS: This was a prospective observational cohort study involving postmenopausal women with osteoporosis in Shanghai, China, for 1 year. A total of 108 patients with an average age of 67.4 ± 5.8 years were treated with 5 mg intravenous ZOL for the first time. Data on demographic characteristics, APRs, blood counts, bone turnover markers, including C-telopeptide collagen crosslinks (CTX) and N-terminal propeptide of type 1 collagen (PINP), and bone mineral density (BMD) were collected. RESULTS: (1) The results did not reveal a relationship between APRs and changes in bone turnover markers and BMD but showed that changes in body temperature (T) within 3 days after administration were positively correlated with changes in the BMD of the LS at Month 12 (ß = 0.279 P = 0.034). (2) This effect was mediated mainly by changes in serum CTX (b = 0.046, 95% CI [0.0010-0.0091]). (3) The ROC curve revealed that when T increased by 1.95 °C, the sensitivity and specificity of identifying clinically important changes in LS BMD after 1 year were optimized. CONCLUSIONS: In this study, we tested the hypothesis that people with elevated body T after initial ZOL treatment had greater improvements in BMD and better outcomes. TRIAL REGISTRATION: NCT, NCT03158246. Registered 18/05/2017.


Assuntos
Reação de Fase Aguda , Temperatura Corporal , Conservadores da Densidade Óssea , Densidade Óssea , Difosfonatos , Imidazóis , Ácido Zoledrônico , Humanos , Ácido Zoledrônico/uso terapêutico , Ácido Zoledrônico/administração & dosagem , Feminino , Idoso , Estudos Prospectivos , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/administração & dosagem , Pessoa de Meia-Idade , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Difosfonatos/uso terapêutico , Difosfonatos/administração & dosagem , Temperatura Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Reação de Fase Aguda/sangue , Resultado do Tratamento , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/sangue , Osteoporose Pós-Menopausa/diagnóstico , Biomarcadores/sangue , Estudos de Coortes , Valor Preditivo dos Testes
2.
ACS Nano ; 18(16): 10840-10849, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38616401

RESUMO

External electric field has the potential to influence metabolic processes such as biological hydrogen production in microorganisms. Based on this concept, we designed and constructed an electroactive hybrid system for microbial biohydrogen production under an electric field comprised of polydopamine (PDA)-modified Escherichia coli (E. coli) and Ni foam (NF). In this system, electrons generated from NF directly migrate into E. coli cells to promote highly efficient biocatalytic hydrogen production. Compared to that generated in the absence of electric field stimulation, biohydrogen production by the PDA-modified E. coli-based system is significantly enhanced. This investigation has demonstrated the mechanism for electron transfer in a biohybrid system and gives insight into precise basis for the enhancement of hydrogen production by using the multifield coupling technology.


Assuntos
Elétrons , Escherichia coli , Hidrogênio , Polímeros , Escherichia coli/metabolismo , Hidrogênio/metabolismo , Hidrogênio/química , Polímeros/química , Polímeros/metabolismo , Indóis/química , Indóis/metabolismo , Níquel/química , Níquel/metabolismo , Transporte de Elétrons
3.
Chemistry ; 29(18): e202203662, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598845

RESUMO

CdS nanoparticles were introduced on E. coli cells to construct a hydrogen generating biohybrid system via the biointerface of tannic acid-Fe complex. This hybrid system promotes good biological activity in a high salinity environment. Under light illumination, the as-synthesized biohybrid system achieves a 32.44 % enhancement of hydrogen production in seawater through a synergistic effect.


Assuntos
Escherichia coli , Nanopartículas , Semicondutores , Hidrogênio
4.
Environ Res ; 213: 113637, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688221

RESUMO

Power plants emit sulfur dioxide (SO2) during combustion, which is typically removed via wet flue gas desulfurization, but this process produces numerous secondary pollutants. Ionic liquids (ILs) can potentially be used to remove SO2, but they suffer from poor mass transfer rates. Hydroxyl ammonium ILs are classical cheap ILs that contain electron-rich O and N sites that favor high absorption capacities. To accelerate mass transfer, two hydroxyl ammonium ILs, triethanolamine citrate and triethanolamine lactate, were immobilized on activated carbon (SILs) and used to capture SO2 from simulated flue gas. They exhibited excellent adsorption at low SO2 partial pressures due to the presence of a large gas-liquid interface. The molar adsorption ratios reached 7.65 and 2.40 mol/mol at 10 kPa SO2. The SILs possessed good SO2 selectivity in SO2/CO2 and SO2/O2 mixtures, because of the only 8% reduction in the total adsorption of SILs at 60 °C. And they exhibited excellent reversibility in which their total adsorption capacities were unaffected after 5 adsorption-desorption cycles. The mechanism analysis revealed that chemical adsorption was the major adsorption route, although physical adsorption also occurred. The main reactive sites included C-O and N-H groups in the ionic liquid. These SILs may potentially replace traditional chemical absorption materials for the separation of SO2 from flue gas.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Líquidos Iônicos , Poluentes Atmosféricos/análise , Compostos de Amônio/análise , Carvão Vegetal , Radical Hidroxila/análise , Líquidos Iônicos/química , Dióxido de Enxofre/análise
5.
Anal Chim Acta ; 1214: 339963, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35649641

RESUMO

Perylene diimide derivatives (PDIs) are suitable ECL luminophore candidates with low triggering potentials and strong ECL signals for fundamental studies and practical applications. However, PDIs tend to aggregate, which affects their optical properties and limits their application in bio-imaging and bio-sensing fields. In this study, an ECL sensor is fabricated based on the layer-by-layer (LBL) assembly of N, N-bis(phosphonomethyl)-3,4,9,10-perylene diimide (PMPDI) and ZrIV ions on the surface of a mesoporous indium tin oxide (ITO) substrate. When six layers of PMPDI are immobilized on ITO, the resulting PMPDI6/ITO electrode shows maximum ECL intensity with K2S2O8 as a co-reactant in the potential range 0 to -0.5 V vs. Ag/AgCl. LBL assembly decreases the aggregation and increases the loading of PMPDI on the mesoporous ITO substrate, which stabilizes and amplifies the ECL signals. The ECL method exhibits excellent sensitivity and selectivity with good stability and reproducibility, when used to detect dopamine (DA) under optimal experimental conditions.


Assuntos
Perileno , Dopamina , Eletrodos , Medições Luminescentes/métodos , Perileno/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA