Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 22: 101497, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38840725

RESUMO

The demand for crayfish surimi products has grown recently due to its high protein content. This study examined the effects of varying κ-carrageenan (CAR) and crayfish surimi (CSM) concentrations on the gelling properties of CAR-CSM composite gel and its intrinsic formation process. Our findings demonstrated that with the increasing concentration of carrageenan, the quality of CAR-CSM exhibited rising trend followed by subsequently fall. Based on the textural qualities, the highest quality CAR-CSM was achieved at 0.3% carrageenan addition. With the exception of chewiness, and the cooking loss of the gel system was 1.62%, whiteness was 82.35%, and the percentage of ß-sheets increased to 57.18%. Further increase in CAR (0.4-0.5%) addition resulted in internal build-up of LCAR-CSM, conversion of intermolecular forces into disulfide bonds and gel breakage. This study exudes timely recommendations for extending the CAR application for the continuous development of crayfish surimi and its derivatives and its overall economic worth.

2.
Food Funct ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864520

RESUMO

In this study, we investigated the ameliorative gut modulatory effect of carboxymethylated Lycium barbarum seed dreg insoluble dietary fiber (LBSDIDF) on hyperlipidemic mice. After seven weeks of insoluble dietary fiber (IDF) intervention, the results demonstrated that IDFs effectively inhibited body weight gain, with slimming and hypolipidemic effects, and improved liver histopathology by decreasing ALT, AST, TNF-α and IL-6, and increasing short-chain fatty acid (SCFA) levels in hyperlipidemic mice. With the increasing diversity and abundance of intestinal bacteria and decreasing ratio of Firmicutes to Bacteroidetes, intestinal flora facilitated cholesterol lowering effects in hyperlipidemic mice. Our research offers a novel concept for the use of LBSDIDF as a prebiotic to improve intestinal dysbiosis or as a preventive measure against obesity and dyslipidemia.

3.
Food Funct ; 15(8): 4109-4121, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38597225

RESUMO

While there have been advancements in understanding the direct and indirect impact of riboflavin (B2) on intestinal inflammation, the precise mechanisms are still unknown. This study focuses on evaluating the effects of riboflavin (B2) supplementation on a colitis mouse model induced with 3% dextran sodium sulphate (DSS). We administered three different doses of oral B2 (VB2L, VB2M, and VB2H) and assessed its impact on various physiological and biochemical parameters associated with colitis. Mice given any of the three doses exhibited relative improvement in the symptoms and intestinal damage. This was evidenced by the inhibition of the pro-inflammatory cytokines TNF-α, IL-1ß, and CALP, along with an increase in the anti-inflammatory cytokine IL-10. B2 supplementation also led to a restoration of oxidative homeostasis, as indicated by a decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels and an increase in reduced glutathione (GSH) and catalase (CAT) activities. B2 intervention showed positive effects on intestinal barrier function, confirmed by increased expression of tight junction proteins (occludin and ZO-1). B2 was linked to an elevated relative abundance of Actinobacteriota, Desulfobacterota, and Verrucomicrobiota. Notably, Verrucomicrobiota showed a significant increase in the VB2H group, reaching 15.03% relative abundance. Akkermansia exhibited a negative correlation with colitis and might be linked to anti-inflammatory function. Additionally, a remarkable increase in n-butyric acid, i-butyric acid, and i-valeric acid was reported in the VB2H group. The ameliorating role of B2 in gut inflammation can be attributed to immune system modulation as well as alterations in the gut microbiota composition, along with elevated levels of fecal SCFAs.


Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Homeostase , Camundongos Endogâmicos C57BL , Riboflavina , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Riboflavina/farmacologia , Homeostase/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
4.
Food Res Int ; 184: 114270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609246

RESUMO

This work set out to investigate how the physicochemical markers, volatiles, and metabolomic characteristics of mixed fermented the fermentation of Lycium barbarum and Polygonatum cyrtonema compound wine (LPCW) from S. cerevisine RW and D. hansenii AS2.45 changed over the course of fermentation. HS-SPME-GC-MS combined with non-targeted metabolomics was used to follow up and monitor the fermentation process of LPCW. In total, 43 volatile chemical substances, mostly alcohols, esters, acids, carbonyl compounds, etc., were discovered in LPCW. After 30 days of fermentation, phenylethyl alcohol had increased to 3045.83 g/mL, giving off a rose-like fresh scent. The biosynthesis of valine, leucine, and isoleucine as well as the metabolism of alanine, aspartic acid, and glutamic acid were the major routes that led to the identification of 1385 non-volatile components in total. This study offers a theoretical foundation for industrial development and advances our knowledge of the fundamental mechanism underlying flavor generation during LPCW fermentation.


Assuntos
Lycium , Polygonatum , Vinho , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida
5.
Food Chem X ; 22: 101271, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38495455

RESUMO

Recent studies have witnessed that chemical modification can improve the physicochemical and functional properties of plants' polysaccharides. Herein, we modified the natural Lycium barbarum seed dreg polysaccharides (LBSDPs) by sulfation (S-LBSDPs), phosphorylation (P-LBSDPs), and carboxymethylation (C-LBSDPs), and evaluated the chemical composition and antioxidant activity of their derivatives. Natural polysaccharides and their derivatives exhibited typical polysaccharide absorption peaks and characteristic group absorption peaks in FT-IR spectra along with maximum UV absorption. After modification, the total sugar and protein contents of the derivatives were decreased, whereas the uronic acid content was increased. Among the three derivatives, sulfated polysaccharides displayed excellent thermal stability. S-LBSDP and P-LBSDP showed the highest ABTS radical scavenging and reducing power while S-LBSDPs and C-LBSDPs showed better DPPH radical scavenging effect, and P-LBSDPs showed considerable Fe2+ chelating ability. Our data indicate that chemical modifications can impart a positive effect on the antioxidant potential of plant-derived polysaccharides.

6.
Food Chem X ; 22: 101270, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38495459

RESUMO

Lycium barbarum seed dregs (LBSDs) were used for carboxymethyl modification, resulting in three degree of substitution samples (DS). Based on the substitution degree, samples were designated as low degree of substitution insoluble dietary fiber (L-IDF), medium degree of substitution insoluble dietary fiber (M-IDF) and high degree of substitution insoluble dietary fiber (H-IDF). Physicochemical and functional properties of IDFs were examined in relation to carboxymethylation degree. Infrared Fourier transform spectroscopy (FT-IR) confirmed the carboxymethyl group. According to the results, IDF, L-IDF, M-IDF, and H-IDF acquired higher enthalpy changes, and their thermal stability improved significantly. A higher DS resulted in an increase in hydration properties such as water retention capacity and water swelling capacity, as well as functional properties such as glucose adsorption capacity, nitrite ion adsorption capacity, and cholesterol adsorption capacity. As a result, carboxymethylation could effectively enhance the biological properties of L. barbarum seed dreg insoluble dietary fiber (LBSDIDF).

7.
Food Chem ; 428: 136770, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421664

RESUMO

This study aimed to examine the effect of fermentation methods on the quality of Lycium barbarum and Polygonatum cyrtonema compound wine (LPW) by combining non-targeted metabolomic approaches with chemometrics and path profiling to determine the chemical and metabolic properties of LPW. The results demonstrated that SRA had higher leaching rates of total phenols and flavonoids, reaching 4.20 ± 0.10 v/v ethanol concentration. According to LC-MS non-targeting genomics, the metabolic profiles of LPW prepared by different mixtures of fermentation methods (Saccharomyces cerevisiae RW; Debaryomyces hansenii AS2.45) of yeast differed significantly. Amino acids, phenylpropanoids, flavonols, etc., were identified as the differential metabolites between different comparison groups. The pathways of tyrosine metabolism, biosynthesis of phenylpropanoids, and metabolism of 2-oxocarboxylic acids enriched 17 distinct metabolites. SRA stimulated the production of tyrosine and imparted a distinctive saucy aroma to the wine samples, providing a novel research concept for the microbial fermentation-based production of tyrosine.


Assuntos
Lycium , Polygonatum , Vinho , Vinho/análise , Fermentação , Lycium/metabolismo , Polygonatum/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo
8.
Food Chem ; 409: 135277, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36586271

RESUMO

Lycium barbarum and Polygonatum cyrtonema are known for their medicinal, edible, and ornamental properties. The sensory indices of the novel high-quality L. barbarum and P. cyrtonema compound wine (LPCW) fermented by Saccharomyces cerevisiae RW and Debaryomyces hansenii AS2.45 under different inoculation methods were analyzed. The alcohol content of the LPCW ranged from 3.88 to 4.75 % under three mixed inoculations. The total saponin and total polysaccharide contents in LPCW inoculated with D. hansenii first and S. cerevisiae after 24 h were 4.39 mg/mL and 0.21 mg/mL, respectively. Ethyl butyrate, citronellol, and 3-(methylthio) propanol were unique metabolites of D. hansenii. 4-Methoxybenzoic acid was the core product of brewing of by S. cerevisiae. Except for wine inoculated with S. cerevisiae only, the acceptability scores of all the LPCW samples were higher than 7.3. Our data provided the foundation for the development and application of medicinal and food homologous substances in food fermentation.


Assuntos
Lycium , Polygonatum , Vinho , Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Polygonatum/metabolismo , Lycium/metabolismo , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...