Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38712046

RESUMO

Interleukin 2 (IL-2) is the first identified cytokine and its interaction with receptors has been known to shape the immune responses in many lymphoid or non-lymphoid tissues for more than four decades. Active T cells are the primary cellular source for IL-2 production and epithelial cells have never been considered the major cellular source of IL-2 under physiological conditions. It is, however, tempting to speculate that epithelial cells could potentially express IL-2 that regulates the intricate interactions between epithelial cells and lymphocytes. Datamining our recently published single-cell RNAseq in the mouse mammary gland identified IL-2 expression in mammary epithelial cells, which is induced by prolactin via the STAT5 signaling pathway. Furthermore, epithelial IL-2 plays a crucial role in maintaining the physiological functions of natural killer (NK) cells within the mammary glands. IL-2 deletion in the mammary epithelial cells leads to a significant reduction in the number and function of NK cells, which in turn results in defective immunosurveillance, expansion of luminal epithelial cells, and tumor development. Interestingly, T cells in the mammary glands are not changed, indicating the specific regulation of NK cells by epithelial IL-2 production. In agreement, we also found that human epithelial cells express IL-2 and NK cells express the highest level of IL2RB among all the immune cells. Here, we provide the first evidence that epithelial cells produce IL-2, which is critical for maintaining the physiological functions of NK cells in immunosurveillance.

2.
Commun Biol ; 7(1): 481, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641668

RESUMO

Childhood Sjögren's disease represents critically unmet medical needs due to a complete lack of immunological and molecular characterizations. This study presents key immune cell subsets and their interactions in the periphery in childhood Sjögren's disease. Here we show that single-cell RNA sequencing identifies the subsets of IFN gene-enriched monocytes, CD4+ T effector memory, and XCL1+ NK cells as potential key players in childhood Sjögren's disease, and especially in those with recurrent parotitis, which is the chief symptom prompting clinical visits from young children. A unique cluster of monocytes with type I and II IFN-related genes is identified in childhood Sjögren's disease, compared to the age-matched control. In vitro regulatory T cell functional assay demonstrates intact functionality in childhood Sjögren's disease in contrast to reduced suppression in adult Sjögren's disease. Mapping this transcriptomic landscape and interplay of immune cell subsets will expedite the understanding of childhood Sjögren's disease pathogenesis and set the foundation for precision medicine.


Assuntos
Síndrome de Sjogren , Adulto , Criança , Humanos , Pré-Escolar , Síndrome de Sjogren/genética , Síndrome de Sjogren/diagnóstico , Linfócitos T Reguladores , Perfilação da Expressão Gênica , Transcriptoma , Células Matadoras Naturais
3.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405853

RESUMO

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration. Statement of significance: We show that KDM6A participates in immune recognition of myeloma tumor cells by directly regulating the expression of the master regulators of MHC-I and II, NLRC5 and CIITA. The expression of these regulators can by rescued by the HDAC3 inhibitors in KDM6A-null cell lines.

4.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334978

RESUMO

An effective cancer therapy requires killing cancer cells and targeting the tumor microenvironment (TME). Searching for molecules critical for multiple cell types in the TME, we identified NR4A1 as one such molecule that can maintain the immune suppressive TME. Here, we establish NR4A1 as a valid target for cancer immunotherapy and describe a first-of-its-kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 degrades NR4A1 within hours in vitro and exhibits long-lasting NR4A1 degradation in tumors with an excellent safety profile. NR-V04 inhibits and frequently eradicates established tumors. At the mechanistic level, NR-V04 induces the tumor-infiltrating (TI) B cells and effector memory CD8+ T (Tem) cells and reduces monocytic myeloid-derived suppressor cells (m-MDSC), all of which are known to be clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anticancer immune responses and offers a new avenue for treating various types of cancers such as melanoma.


Assuntos
Melanoma , Células Supressoras Mieloides , Humanos , Linhagem Celular Tumoral , Imunoterapia , Melanoma/patologia , Células Supressoras Mieloides/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Microambiente Tumoral , Quimera de Direcionamento de Proteólise
5.
bioRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37961699

RESUMO

Spatial transcriptomics (ST) technologies have advanced to enable transcriptome-wide gene expression analysis at submicron resolution over large areas. Analysis of high-resolution ST data relies heavily on image-based cell segmentation or gridding, which often fails in complex tissues due to diversity and irregularity of cell size and shape. Existing segmentation-free analysis methods scale only to small regions and a small number of genes, limiting their utility in high-throughput studies. Here we present FICTURE, a segmentation-free spatial factorization method that can handle transcriptome-wide data labeled with billions of submicron resolution spatial coordinates. FICTURE is orders of magnitude more efficient than existing methods and it is compatible with both sequencing- and imaging-based ST data. FICTURE reveals the microscopic ST architecture for challenging tissues, such as vascular, fibrotic, muscular, and lipid-laden areas in real data where previous methods failed. FICTURE's cross-platform generality, scalability, and precision make it a powerful tool for exploring high-resolution ST.

6.
Am J Transl Res ; 15(10): 6159-6169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969189

RESUMO

OBJECTIVE: To investigate the effect of contralateral controlled functional electrical stimulation (CCFES) combined with mirror therapy on motor function and negative mood in stroke patients. METHODS: Medical records of 94 stroke patients in Baoji Central Hospital admitted from April 2020 to October 2022 were retrospectively analyzed. Among them, 45 patients receiving routine rehabilitation training combined with mirror therapy were included in a control group, and 49 patients receiving CCFES combined with mirror therapy were in an observation group. Observation indexes included changes in Fugl-Meyer Assessment (FMA), Berg Balance Scale (BBS), Hamilton Anxiety Rating Scale (HAMA), Hamilton Depression Rating Scale (HAMD), Stroke Specific Quality of Life Scale (SS-QoL) score, and Barthel Index score before and after treatment. Patients with HAMA score >14 and HAMD score ≥20 after the treatment were included in a negative mood group, and logistics regression was used to analyze the risk factors for negative mood. RESULTS: The observation group had a significantly higher overall response rate after treatment compared to the control group. In addition, the observation group exhibited significantly higher scores in the FMA and BBS after treatment, indicating better physical function (P<0.001). Furthermore, the observation group showed lower HAMA and HAMD scores after treatment, suggesting reduced anxiety and depression levels (P<0.001). The quality-of-life scores measured by the SS-QoL and the Barthel Index score were both increased in the observation group after treatment, indicating better overall well-being and functional independence (P<0.001). Logistic regression analysis revealed that age, post-treatment SS-QoL scores, and post-treatment Barthel Index were identified as influencing factors for the onset of adverse emotions in patients (P<0.05). CONCLUSION: CCFES plus mirror therapy can effectively ameliorate limb function and lessen anxiety and depression in stroke patients, exerting beneficial effects on rehabilitation.

7.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745359

RESUMO

The mismatch repair (MMR) pathway is known as a tumor suppressive pathway and genes involved in MMR are commonly mutated in hereditary colorectal or other cancer types. However, the function of MMR genes/proteins in breast cancer progression and metastasis are largely unknown. We found that MSH2, but not MLH1, is highly enriched in basal-like breast cancer (BLBC) and that its protein expression is inversely correlated with overall survival time (OS). MSH2 expression is frequently elevated due to genomic amplification or gain-of-expression in BLBC, which results in increased MSH2 protein to pair with MSH6 (collectively referred to as MutSα). Genetic deletion of MSH2 or MLH1 results in a contrasting phenotype in metastasis, with MSH2-deletion leading to reduced metastasis and MLH1-deletion to enhanced liver or lung metastasis. Mechanistically, MSH2-deletion induces the expression of a panel of chemokines in BLBC via epigenetic and/or transcriptional regulation, which leads to an immune reactive tumor microenvironment (TME) and elevated immune cell infiltrations. MLH1 is not correlated with chemokine expression and/or immune cell infiltration in BLBC, but its deletion results in strong accumulation of neutrophils that are known for metastasis promotion. Our study supports the differential functions of MSH2 and MLH1 in BLBC progression and metastasis, which challenges the paradigm of the MMR pathway as a universal tumor suppressive mechanism.

8.
bioRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609171

RESUMO

An effective cancer therapy requires both killing cancer cells and targeting tumor-promoting pathways or cell populations within the tumor microenvironment (TME). We purposely search for molecules that are critical for multiple tumor-promoting cell types and identified nuclear receptor subfamily 4 group A member 1 (NR4A1) as one such molecule. NR4A1 has been shown to promote the aggressiveness of cancer cells and maintain the immune suppressive TME. Using genetic and pharmacological approaches, we establish NR4A1 as a valid therapeutic target for cancer therapy. Importantly, we have developed the first-of-its kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 effectively degrades NR4A1 within hours of treatment in vitro and sustains for at least 4 days in vivo, exhibiting long-lasting NR4A1-degradation in tumors and an excellent safety profile. NR-V04 leads to robust tumor inhibition and sometimes eradication of established melanoma tumors. At the mechanistic level, we have identified an unexpected novel mechanism via significant induction of tumor-infiltrating (TI) B cells as well as an inhibition of monocytic myeloid derived suppressor cells (m-MDSC), two clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anti-cancer immune responses and offers a new avenue for treating various types of cancer.

10.
Cell Chem Biol ; 30(11): 1421-1435.e12, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37572669

RESUMO

HDAC3 and HDAC8 have critical biological functions and represent highly sought-after therapeutic targets. Because histone deacetylases (HDACs) have a very conserved catalytic domain, developing isozyme-selective inhibitors remains challenging. HDAC3/8 also have deacetylase-independent activity, which cannot be blocked by conventional enzymatic inhibitors. Proteolysis-targeting chimeras (PROTACs) can selectively degrade a target enzyme, abolishing both enzymatic and scaffolding function. Here, we report a novel HDAC3/8 dual degrader YX968 that induces highly potent, rapid, and selective degradation of both HDAC3/8 without triggering pan-HDAC inhibitory effects. Unbiased quantitative proteomic experiments confirmed its high selectivity. HDAC3/8 degradation by YX968 does not induce histone hyperacetylation and broad transcriptomic perturbation. Thus, histone hyperacetylation may be a major factor for altering transcription. YX968 promotes apoptosis and kills cancer cells with a high potency in vitro. YX968 thus represents a new probe for dissecting the complex biological functions of HDAC3/8.


Assuntos
Inibidores de Histona Desacetilases , Histonas , Histonas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Acetilação , Proteômica , Processamento de Proteína Pós-Traducional
11.
Disabil Rehabil ; : 1-7, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341447

RESUMO

PURPOSE: In this study, we investigated the effects of mirror therapy (MT) combined with contralaterally controlled functional electrical stimulation (CCFES) on upper limb motor function, activities of daily life, and corticospinal excitability in post-stroke patients. METHODS: Sixty post-stroke patients were randomly divided into four groups: CCFES, MT, MT combined with CCFES, and control. All the patients underwent routine rehabilitation. Those in the MT, CCFES, MT combined with CCFES, and control groups received MT, CCFES, MT combined with CCFES, and routine rehabilitation alone, respectively. Upper limb motor function, activities of daily living, and corticospinal excitability were evaluated before and after a 3-week intervention period. RESULTS: MT combined with CCFES demonstrated a significantly greater therapeutic effect on motor function of the paretic wrist than CCFES, MT, or routine rehabilitation alone. However, there was no significant difference in the overall motor function of the affected upper limb, activities of daily life, or corticospinal excitability between the MT combined with CCFES group and the other three groups. CONCLUSION: MT combined with CCFES may be a potential adjuvant therapy to promote motor function in paretic wrist after stroke.


The combined therapy of mirror therapy (MT) and contralaterally controlled functional electrical stimulation (CCFES) may be a potential adjuvant therapy to promote motor function in paretic wrists after stroke.MT combined with CCFES could be incorporated into rehabilitation programs for post-stroke patients with impaired upper limb motor function.Exploring the potential benefits of combining different rehabilitation therapies could inform the development of more effective interventions.

12.
Sci Immunol ; 8(82): eabn0484, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115913

RESUMO

The networks of transcription factors (TFs) that control intestinal-resident memory CD8+ T (TRM) cells, including multipotency and effector programs, are poorly understood. In this work, we investigated the role of the TF Bcl11b in TRM cells during infection with Listeria monocytogenes using mice with post-activation, conditional deletion of Bcl11b in CD8+ T cells. Conditional deletion of Bcl11b resulted in increased numbers of intestinal TRM cells and their precursors as well as decreased splenic effector and circulating memory cells and precursors. Loss of circulating memory cells was in part due to increased intestinal homing of Bcl11b-/- circulating precursors, with no major alterations in their programs. Bcl11b-/- TRM cells had altered transcriptional programs, with diminished expression of multipotent/multifunctional (MP/MF) program genes, including Tcf7, and up-regulation of the effector program genes, including Prdm1. Bcl11b also limits the expression of Ahr, another TF with a role in intestinal CD8+ TRM cell differentiation. Deregulation of TRM programs translated into a poor recall response despite TRM cell accumulation in the intestine. Reduced expression of MP/MF program genes in Bcl11b-/- TRM cells was linked to decreased chromatin accessibility and a reduction in activating histone marks at these loci. In contrast, the effector program genes displayed increased activating epigenetic status. These findings demonstrate that Bcl11b is a frontrunner in the tissue residency program of intestinal memory cells upstream of Tcf1 and Blimp1, promoting multipotency and restricting the effector program.


Assuntos
Linfócitos T CD8-Positivos , Fatores de Transcrição , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular , Intestinos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
13.
Cancer Res Commun ; 3(3): 395-403, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36895729

RESUMO

Physical activity (PA) is associated with decreased signaling in the mTOR pathway in animal models of mammary cancer, which may indicate favorable outcomes. We examined the association between PA and protein expression in the mTOR signaling pathway in breast tumor tissue. Data on 739 patients with breast cancer, among which 125 patients had adjacent-normal tissue, with tumor expression for mTOR, phosphorylated (p)-mTOR, p-AKT, and p-P70S6K were analyzed. Self-reported recreational PA levels during the year prior to diagnosis were classified using the Centers for Disease Control and Prevention guideline as sufficient (for moderate or vigorous) PA or insufficient PA (any PA but not meeting the guideline) or no PA. We performed linear models for mTOR protein and two-part gamma hurdle models for phosphorylated proteins. Overall, 34.8% of women reported sufficient PA; 14.2%, insufficient PA; 51.0%, no PA. Sufficient (vs. no) PA was associated with higher expression for p-P70S6K [35.8% increase; 95% confidence interval (CI), 2.6-80.2] and total phosphoprotein (28.5% increase; 95% CI, 5.8-56.3) among tumors with positive expression. In analyses stratified by PA intensity, sufficient versus no vigorous PA was also associated with higher expression levels of mTOR (beta = 17.7; 95% CI, 1.1-34.3) and total phosphoprotein (28.6% higher; 95% CI, 1.4-65.0 among women with positive expression) in tumors. The study found that guideline-concordant PA levels were associated with increased mTOR signaling pathway activity in breast tumors. Studying PA in relation to mTOR signaling in humans may need to consider the complexity of the behavioral and biological factors. Significance: PA increases energy expenditure and limits energy utilization in the cell, which can influence the mTOR pathway that is central to sensing energy influx and regulating cell growth. We studied exercise-mediated mTOR pathway activities in breast tumor and adjacent-normal tissue. Despite the discrepancies between animal and human data and the limitations of our approach, the findings provide a foundation to study the mechanisms of PA and their clinical implications.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Estados Unidos , Humanos , Feminino , Animais , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Neoplasias da Mama/tratamento farmacológico , Exercício Físico , Fosfoproteínas/metabolismo
14.
Cell Death Discov ; 9(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588105

RESUMO

Small-cell lung cancer (SCLC) is an aggressive malignancy with limited therapeutic options. The dismal prognosis in SCLC is in part associated with an upregulation of BCL-2 family anti-apoptotic proteins, including BCL-XL and MCL-1. Unfortunately, the currently available inhibitors of BCL-2 family anti-apoptotic proteins, except BCL-2 inhibitors, are not clinically relevant because of various on-target toxicities. We, therefore, aimed to develop an effective and safe strategy targeting these anti-apoptotic proteins with DT2216 (our platelet-sparing BCL-XL degrader) and AZD8055 (an mTOR inhibitor) to avoid associated on-target toxicities while synergistically optimizing tumor response. Through BH3 mimetic screening, we identified a subset of SCLC cell lines that is co-dependent on BCL-XL and MCL-1. After screening inhibitors of selected tumorigenic pathways, we found that AZD8055 selectively downregulates MCL-1 in SCLC cells and its combination with DT2216 synergistically killed BCL-XL/MCL-1 co-dependent SCLC cells, but not normal cells. Mechanistically, the combination caused BCL-XL degradation and suppression of MCL-1 expression, and thus disrupted MCL-1 interaction with BIM leading to an enhanced apoptotic induction. In vivo, the DT2216 + AZD8055 combination significantly inhibited the growth of cell line-derived and patient-derived xenografts and reduced tumor burden accompanied by increased survival in a genetically engineered mouse model of SCLC without causing appreciable thrombocytopenia or other normal tissue injuries. Thus, these preclinical findings lay a strong foundation for future clinical studies to test DT2216 + mTOR inhibitor combinations in a subset of SCLC patients whose tumors are co-driven by BCL-XL and MCL-1.

15.
Sensors (Basel) ; 24(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38203106

RESUMO

When conventional delivery vehicles are driven over complex terrain, large vibrations can seriously affect vehicle-loaded equipment and cargo. Semi-active vehicle-mounted vibration isolation control based on road preview can improve the stability of loaded cargo and instruments by enabling them to have lower vertical acceleration. A combined dynamic model including a vehicle and platform is developed first. In order to obtain a non-linear relationship between damping force and input current, a continuous damping control damper model is developed, and the corresponding external characteristic tests are carried out. Because some conventional control algorithms cannot handle complex constraints and preview information, a model predictive control algorithm based on forward road preview and input constraints is designed. Finally, simulations and real tests of the whole vehicle vibration environment are carried out. The results show that the proposed model predictive control based on road preview can effectively improve vibration isolation performance of the vehicle-mounted platform.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36523419

RESUMO

Background: Aidi injection (ADI) is a compound preparation injection of Chinese herbs used to treat patients of nonsmall cell lung cancer (NSCLC) in China. This study aimed to reveal the mechanism of ADI in the treatment of NSCLC by using network pharmacology and molecular docking. Methods: The related targets of ADI and NSCLC were obtained from multiple databases. The network diagram of disease-drug-components-targets (DDCT) and protein-protein interaction (PPI) was constructed to screen key targets. Then, the key targets and main signaling pathways were screened by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Next, in order to validate the results of network pharmacology, expression analysis and survival analysis of key genes were performed. Finally, we carried out the technology of molecular docking to further validate the accuracy of the above results. Results: A total of 207 targets of ADI and 5282 targets of NSCLC were obtained finally. Through the construction of DDCT and PPI network diagrams, 28 key targets were finally obtained. The results of the KEGG enrichment analysis indicated that multiple signaling pathways were associated with NSCLC, which included the MAPK signaling pathway, the IL-17 signaling pathway, and the PI3K/AKT signaling pathway. The key genes in the signaling pathway mainly include TP53, CASP3, MMP9, AKT1, PTGS2, and MAPK1. The results of differently expressed analysis of key genes showed that TP53, CASP3, MMP9, AKT1, PTGS2, and MAPK1 had statistical differences in lung squamous cell carcinoma (LUSC) compared with normal tissue (p < 0.001). In lung adenocarcinoma (LUAD), the expression of TP53, CASP3, MMP9, AKT1, and PTGS2 had statistical differences compared with normal tissue (p < 0.001), while the expression of MAPK1 had no statistical difference (p > 0.05). The results of survival analysis of key genes showed that AKT1, MAPK1, CASP3, MMP9, TP53, and PTGS2 had statistical differences in the OS or RFS of NSCLC patients (p < 0.05). In addition, the results of molecular docking indicated that the key genes and the main components have good docking activity. Conclusions: This study revealed the potential mechanism of ADI in the treatment of NSCLC with multipathways and multitargets and provided a scientific basis for the in-depth study of ADI in the treatment of NSCLC.

17.
JNCI Cancer Spectr ; 6(6)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222575

RESUMO

BACKGROUND: Adiposity and skeletal muscle levels assessed on computed tomography (CT) scans are prognostic indicators for patients with breast cancer. However, the intraindividual reliability of temporal changes in body composition assessed on opportunistic CT scans is unclear. METHODS: This retrospective study included 50 patients newly diagnosed with breast cancer who had archived CT scans pre- and postsurgery for breast cancer. The third lumbar CT image was segmented for areas of 3 types of adipose tissues and 5 different densities of skeletal muscles. Mean and percent changes in areas pre- vs postsurgery were compared using Wilcoxon signed rank tests. Intraclass correlation coefficients (ICCs) with 95% confidence intervals were assessed. A 2-sided P less than .05 was considered statistically significant. RESULTS: Mean (SD) age at diagnosis was 58.3 (12.5) years, and the interval between CT scans was 590.6 (536.8) days. Areas for body composition components were unchanged except for intermuscular adipose tissue (mean change = 1.45 cm2, 6.74% increase, P = .008) and very high-density muscle (mean change = -0.37 cm2, 11.08% decrease, P = .01) during the interval. There was strong intraindividual reliability in adipose tissue and skeletal muscle areas on pre- vs postsurgery scans overall (ICC = 0.763-0.998) and for scans collected 3 or less years apart (ICC = 0.802-0.999; 42 patients). CONCLUSIONS: Although some body composition components may change after breast cancer surgery, CT scan assessments of body composition were reliable for a 3-year interval including the surgery. These findings inform measurement characteristics of body composition on opportunistic CT scans of patients undergoing surgery for breast cancer.


Assuntos
Adiposidade , Neoplasias da Mama , Humanos , Lactente , Feminino , Neoplasias da Mama/diagnóstico por imagem , Estudos Retrospectivos , Reprodutibilidade dos Testes , Músculo Esquelético/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Obesidade
19.
Cancers (Basel) ; 14(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35805056

RESUMO

Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.

20.
Discov Oncol ; 13(1): 34, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35608730

RESUMO

BACKGROUND: Aberrant activation of the mammalian Target of Rapamycin (mTOR) pathway has been linked to obesity and endocrine therapy resistance, factors that may contribute to Black-White disparities in breast cancer outcomes. We evaluated associations of race and clinicopathological characteristics with mRNA expression of key mTOR pathway genes in breast tumors. METHODS: Surgical tumor tissue blocks were collected from 367 newly diagnosed breast cancer patients (190 Black and 177 White). Gene expression of AKT1, EIF4EBP1, MTOR, RPS6KB2, and TSC1 were quantified by NanoString nCounter. Differential gene expression was assessed using linear regression on log2-transformed values. Gene expression and DNA methylation data from TCGA were used for validation and investigation of race-related differences. RESULTS: Compared to White women, Black women had relative under-expression of AKT1 (log2 fold-change = - 0.31, 95% CI - 0.44, - 0.18) and RPS6KB2 (log2 fold-change = - 0.11, 95% CI - 0.19, - 0.03). Higher vs. lower tumor grade was associated with relative over-expression of EIF4EBP1 and RPS6KB2, but with lower expression of TSC1. Compared to luminal tumors, triple-negative tumors had relative under-expression of TSC1 (log2 fold-change = - 0.42, 95% CI - 0.22, - 0.01). The results were similar in the TCGA breast cancer dataset. Post-hoc analyses identified differential CpG methylation within the AKT1 and RPS6KB2 locus between Black and White women. CONCLUSIONS: Over-expression of RPS6KB2 and EIF4EBP1 and under-expression of TSC1 might be indicators of more aggressive breast cancer phenotypes. Differential expression of AKT1 and RPS6KB2 by race warrants further investigation to elucidate their roles in racial disparities of treatment resistance and outcomes between Black and White women with breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...