Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
1.
Plant Dis ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764344

RESUMO

Wurfbainia villosa var. villosa is a traditional Chinese herbal medicine under the family Zingiberaceae, and its ripe fruits (called Fructus Amomi) are widely used clinically for the treatment of gastrointestinal disorders (Yang et al. 2023; Chen et al. 2023). In September 2023, plants of W. villosa var. villosa exhibited anthracnose-like symptoms on leaf with a disease incidence of 35% (n = 100 investigated plants) in an approximately 90 m2 field in Guangning, China (N23°42'51.70″, E112°26'35.75″). Light yellowish-green spots (~2 mm diameter) initially appeared on the infected leaves, gradually formed sub-circular or irregular spots, then fused and expanded, resulting in wilting of the leaves. To identify the causal agent, 10 symptomatic leaves were collected and transferred to the laboratory. The symptomatic leaf samples were surface sterilized in 0.5% NaClO for 2 min, and in 70% ethanol for 30 s, then washed three times with sterile water and air-dried on sterile filter paper. The leaf tissues were placed on potato dextrose agar (PDA) medium containing 100 µg mL-1 of ampicillin (Sigma-Aldrich, St. Louis, MO) and incubated for 7 days at 28°C in darkness. Nine isolates with similar colony morphology were isolated from the 10 plated leaves. Three representative isolates (GNAF03, GNAF06, GNAF09 with approximately 3.5 cm in diameter after 3 days of incubation) appeared gray to dark brown with dense aerial hyphae at the front and gray to black colonies on the reverse of the plates. Conidia were cylindrical and measured 21.2 to 29.3 µm long × 7.1 to 9.6 µm wide (n = 50). Appressoria were formed by the tips of germ tubes or hyphae and were brown, ellipsoid, thick-walled, and smooth-margined, measuring 10.2 to 12.3 µm long × 6.4 to 8.2 µm wide (n = 50). Morphologically, the fungal isolates resembled Colletotrichum sp. (Weir et al. 2012). For molecular analysis, genomic DNA was extracted from fresh mycelia of the three isolates, and the primers ACT-512F/ACT-783R, CL1/CL2A, GDF/GDR, and ITS1/ITS4 were used to amplify partial regions of rDNA-ITS, actin (ACT), calmodulin (CAL), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions, respectively (Weir et al. 2012). The resulting sequences with more than 99% nucleotide identity to C. gloeosporioides were submitted to GenBank (accession numbers PP552725, PP552726, and OR827444 for ACT; PP552727, PP552728, and OR827443 for CAL; PP552729, PP552730, and OR827445 for GAPDH; PP549996, PP549999, and OR841394 for ITS). A phylogenetic tree was generated by the maximum likelihood method using the concatenated sequences of ACT, CAL, GADPH, and ITS by Polysuite software (Damm et al. 2020). Based on morphological and molecular analysis, the three isolates were characterized as C. gloeosporioides. The pathogenicity of the GNAF09 isolate was assessed on W. villosa var. villosa seedling leaves inoculated by spraying with 40 µL of conidial suspension at 106 conidia mL-1 or wounded with a sterile toothpick then inoculated with mycelial agar plugs (5 mm diameter). Control leaves were inoculated with 40 µL of sterile distilled water or agar plugs without mycelia. The inoculated plants were placed in a humid chamber at 28°C with 80% humidity and a 12 h light-dark photoperiod. Symptoms similar to those seen on naturally infected leaves were observed on all inoculated leaves after 7 days inoculation. Re-isolation was performed from 80% of the inoculated leaves and isolates were confirmed as C. gloeosporioides morphologically, confirming Koch's postulates, and by sequencing the ACT, CAL, GADPH, and ITS regions. The control groups remained asymptomatic. In previous studies, C. gloeosporioides has also caused anthracnose on Chinese medicinal plants, including Baishao (Radix paeoniae alba) (Zhang et al. 2017) and Rubia cordifolia L. (Tang et al. 2020). To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on W. villosa var. villosa in China. The results of our report serve as valuable references for further research on this disease.

2.
Technol Cancer Res Treat ; 23: 15330338241254075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720626

RESUMO

Objective: Since the update of the 2018 International Federation of Gynecology and Obstetrics (FIGO) staging criteria, there have been few reports on the prognosis of stage III C cervical cancer. Moreover, some studies have drawn controversial conclusions, necessitating further verification. This study aims to evaluate the clinical outcomes and determine the prognostic factors for stage III C cervical cancer patients treated with radical radiotherapy or radiochemotherapy. Methods: The data of 117 stage III C cervical cancer patients (98 III C1 and 19 III C2) who underwent radical radiotherapy or radiochemotherapy were retrospectively analyzed. We evaluated 3-year overall survival (OS) and disease-free survival (DFS) using the Kaplan-Meier method. Prognostic factors were analyzed using the Log-rank test and Cox proportional hazard regression model. The risk of para-aortic lymph node metastasis (LNM) in all patients was assessed through Chi-squared test and logistic regression analysis. Results: For stage III C1 and III C2 patients, the 3-year OS rates were 77.6% and 63.2% (P = .042), and the 3-year DFS rates were 70.4% and 47.4% (P = .003), respectively. The pretreatment location of pelvic LNM, histological type, and FIGO stage was associated with OS (P = .033, .003, .042, respectively); the number of pelvic LNM and FIGO stage were associated with DFS (P = .015, .003, respectively). The histological type was an independent prognostic indicator for OS, and the numbers of pelvic LNM and FIGO stage were independent prognostic indicators for DFS. Furthermore, a pelvic LNM largest short-axis diameter ≥ 1.5 cm and the presence of common iliac LNM were identified as high-risk factors influencing para-aortic LNM in stage III C patients (P = .046, .006, respectively). Conclusions: The results of this study validated the 2018 FIGO staging criteria for stage III C cervical cancer patients undergoing concurrent chemoradiotherapy. These findings may enhance our understanding of the updated staging criteria and contribute to better management of patients in stage III C.


Assuntos
Quimiorradioterapia , Estadiamento de Neoplasias , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/mortalidade , Feminino , Pessoa de Meia-Idade , Prognóstico , Adulto , Idoso , Estudos Retrospectivos , Metástase Linfática , Estimativa de Kaplan-Meier , Resultado do Tratamento , Modelos de Riscos Proporcionais , Taxa de Sobrevida
3.
One Health ; 18: 100748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774301

RESUMO

The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.

4.
JAMA Ophthalmol ; 142(5): e235761, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38770958

RESUMO

This case report describes a diagnosis of floating retinal veins in a patient aged 4 years with a history of stage 2 familial exudative vitreoretinopathy.


Assuntos
Angiofluoresceinografia , Veia Retiniana , Humanos , Angiofluoresceinografia/métodos , Veia Retiniana/diagnóstico por imagem , Veia Retiniana/patologia , Masculino , Feminino , Tomografia de Coerência Óptica/métodos
5.
J Colloid Interface Sci ; 664: 980-991, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508033

RESUMO

To reduce the preparation cost of high-purity hydrogen, it is necessary to search suitable non-precious metal catalysts with high activity and robust stability. Herein, two means (heteroatom-doping and the heterostructure construction) were adopted together to improve the dual-function activity of NiFe LDH which was widely used in water electrolysis. Mo doped NiFe LDH nanoflowers were firstly generated by hydrothermal reaction, and then NiSx was modified on the petals via electrodeposition. Finally, the obtained NF/Mo-NiFe LDH/NiSx with large electrochemical active area exhibits the expected electrochemical performance with the overpotential at 100 mA cm-2 of 169 and 249 mV for hydrogen evolution (HER) and oxygen evolution reaction (OER) respectively. Assembling NF/Mo-NiFe LDH/NiSx into a two-electrode device for the integral water electrolysis, it just requires a cell voltage of 1.69 V to drive a current density of 100 mA cm-2, and keeps stable after 50-hour continuous operation in 1.0 M KOH. Mo-doping not only regulates the electronic structure of the transition metals and reduces the energy barrier of HER intermediates, but also facilitates the generation of reactive sites for OER. Meanwhile, the construction of heterointerface ensures the synergism between NiSx and Mo-NiFe LDH and accelerates the electron transfer across interfaces, thus enhancing the bifunctional performance.

6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 257-266, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38512036

RESUMO

Objective To prepare anti-human B7 homolog 4 (B7-H4) egg yolk immunoglobulins (IgY) polyclonal antibody and establish a double-antibody sandwich ELISA for the detection of soluble B7-H4 (sB7-H4) protein in human serum. Methods Bioinformatics was used to screen specific B cell epitope peptides of human sB7-H4. New Hyland Grey laying hens were immunized with these peptides, and the eggs from the immunized hens were collected to purify chicken anti-human B7-H4 IgY antibody. The purity, concentration and titer of the antibody were detected, and its specificity and function of the antibodies were verified by using ELISA, Western blot analysis and flow cytometry, respectively. A double-antibody sandwich ELISA was established to detect sB7-H4 in clinical samples by using the IgY antibody. Comparative detection was performed using a commercialized ELISA kit on the same set of clinical samples. Results The chicken anti-human B7-H4 IgY antibodies were successfully prepared and proven to be highly specific for the human B7-H4 protein. The ELISA established with the IgY polyclonal antibody detected significantly higher levels of soluble B7-H4 in the serum of patients with ovarian cancer and benign ovarian tumors compared to healthy controls. These results were consistent with the detection results obtained using a commercialized ELISA kit. However, the ELISA with IgY antibody exhibited higher sensitivity than the commercialized kit. Conclusion The chicken polyclonal antibody against human B7-H4 IgY is successfully prepared, and a double-antibody sandwich ELISA suitable for detecting sB7-H4 protein in human serum is established.


Assuntos
Galinhas , Imunoglobulinas , Neoplasias Ovarianas , Humanos , Animais , Feminino , Anticorpos , Ensaio de Imunoadsorção Enzimática , Peptídeos
7.
Proc Natl Acad Sci U S A ; 121(11): e2400272121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437534

RESUMO

The endothelial lining of cerebral microvessels is damaged relatively early after cerebral ischemia/reperfusion (I/R) injury and mediates blood-brain barrier (BBB) disruption, neurovascular injury, and long-term neurological deficits. I/R induces BBB leakage within 1 h due to subtle structural alterations in endothelial cells (ECs), including reorganization of the actin cytoskeleton and subcellular redistribution of junctional proteins. Herein, we show that the protein peroxiredoxin-4 (Prx4) is an endogenous protectant against endothelial dysfunction and BBB damage in a murine I/R model. We observed a transient upregulation of Prx4 in brain ECs 6 h after I/R in wild-type (WT) mice, whereas tamoxifen-induced, selective knockout of Prx4 from endothelial cells (eKO) mice dramatically raised vulnerability to I/R. Specifically, eKO mice displayed more BBB damage than WT mice within 1 to 24 h after I/R and worse long-term neurological deficits and focal brain atrophy by 35 d. Conversely, endothelium-targeted transgenic (eTG) mice overexpressing Prx4 were resistant to I/R-induced early BBB damage and had better long-term functional outcomes. As demonstrated in cultures of human brain endothelial cells and in animal models of I/R, Prx4 suppresses actin polymerization and stress fiber formation in brain ECs, at least in part by inhibiting phosphorylation/activation of myosin light chain. The latter cascade prevents redistribution of junctional proteins and BBB leakage under conditions of Prx4 repletion. Prx4 also tempers microvascular inflammation and infiltration of destructive neutrophils and proinflammatory macrophages into the brain parenchyma after I/R. Thus, the evidence supports an indispensable role for endothelial Prx4 in safeguarding the BBB and promoting functional recovery after I/R brain injury.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , Animais , Humanos , Camundongos , Atrofia , Células Endoteliais , Endotélio , Peroxirredoxinas
8.
Adv Sci (Weinh) ; : e2307969, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482752

RESUMO

Non-antibiotic strategies are desperately needed to treat post-traumatic osteomyelitis (PTO) due to the emergence of superbugs, complex inflammatory microenvironments, and greatly enriched biofilms. Previously, growing evidence indicated that quorum sensing (QS), a chemical communication signal among bacterial cells, can accelerate resistance under evolutionary pressure. This study aims to develop a medical dressing to treat PTO by inhibiting QS and regulating the inflammatory microenvironment, which includes severe oxidative stress and acid abscesses, through a reactive oxygen species (ROS)-responsive bond between N1- (4-borobenzoyl)-N3-(4-borobenzoyl)-the N1, the N1, N3, N3-tetramethylpropane-1,3-diamine (TSPBA) and polyvinyl alcohol (PVA), and the amino side chain of hyperbranched polylysine (HBPL). Physically enclosed QS inhibitors subsequently exerted the antibacterial effects. This hydrogel can scavenge hydrogen peroxide (H2 O2 ), superoxide anion free radical (·O2 - ), hydroxyl radicals (·OH) and 2,2-di(4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH) to reduce oxidative stress and inhibit "bacteria-to-bacteria communication", thus clearing planktonic bacteria and biofilms, accelerating bacterial plasmolysis, reducing bacterial virulence and interfering with membrane transport. After in vivo treatment with hydrogel, nearly all bacteria are eliminated, inflammation is effectively inhibited, and osteogenesis and bone repair are promoted to facilitate recovery from PTO. The work demonstrates the clinical translational potential of the hydrogel in the treatment of drug-resistant bacteria induced PTO.

9.
Eur J Med Chem ; 268: 116285, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428273

RESUMO

Biological studies on the endocannabinoid system (ECS) have suggested that monoacylglycerol lipase (MAGL), an essential enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), is a novel target for developing antidepressants. A decrease of 2-AG levels in the hippocampus of the brain has been observed in depressive-like models induced by chronic stress. Herein, employing a structure-based approach, we designed and synthesized a new class of (piperazine-1-carbonyl) quinolin-2(1H)-one derivatives as potent, reversible and selective MAGL inhibitors. And detailed structure-activity relationships (SAR) studies were discussed. Compound 27 (IC50 = 10.3 nM) exhibited high bioavailability (92.7%) and 2-AG elevation effect in vivo. Additionally, compound 27 exerted rapid antidepressant effects caused by chronic restraint stress (CRS) and didn't show signs of addictive properties in the conditioned place preference (CPP) assays. Our study is the first to report that reversible MAGL inhibitors can treat chronic stress-induced depression effectively, which may provide a new potential therapeutic strategy for the discovery of an original class of safe, rapid antidepressant drugs.


Assuntos
Inibidores Enzimáticos , Monoacilglicerol Lipases , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Monoacilglicerol Lipases/metabolismo , Depressão/tratamento farmacológico , Monoglicerídeos , Relação Estrutura-Atividade , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Endocanabinoides
10.
J Am Chem Soc ; 146(12): 8216-8227, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38486429

RESUMO

Bioorthogonal reactions provide a powerful tool to manipulate biological processes in their native environment. However, the transition-metal catalysts (TMCs) for bioorthogonal catalysis are limited to low atomic utilization and moderate catalytic efficiency, resulting in unsatisfactory performance in a complex physiological environment. Herein, sulfur-doped Fe single-atom catalysts with atomically dispersed and uniform active sites are fabricated to serve as potent bioorthogonal catalysts (denoted as Fe-SA), which provide a powerful tool for in situ manipulation of cellular biological processes. As a proof of concept, the N6-methyladensoine (m6A) methylation in macrophages is selectively regulated by the mannose-modified Fe-SA nanocatalysts (denoted as Fe-SA@Man NCs) for potent cancer immunotherapy. Particularly, the agonist prodrug of m6A writer METTL3/14 complex protein (pro-MPCH) can be activated in situ by tumor-associated macrophage (TAM)-targeting Fe-SA@Man, which can upregulate METTL3/14 complex protein expression and then reprogram TAMs for tumor killing by hypermethylation of m6A modification. Additionally, we find the NCs exhibit an oxidase (OXD)-like activity that further boosts the upregulation of m6A methylation and the polarization of macrophages via producing reactive oxygen species (ROS). Ultimately, the reprogrammed M1 macrophages can elicit immune responses and inhibit tumor proliferation. Our study not only sheds light on the design of single-atom catalysts for potent bioorthogonal catalysis but also provides new insights into the spatiotemporal modulation of m6A RNA methylation for the treatment of various diseases.


Assuntos
Adenosina/análogos & derivados , Imunoterapia , Neoplasias , Humanos , Metilação de RNA , Catálise , Metiltransferases
11.
Cell Prolif ; : e13617, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403992

RESUMO

COVID-19 has been a global concern for 3 years, however, consecutive plasma protein changes in the disease course are currently unclear. Setting the mortality within 28 days of admission as the main clinical outcome, plasma samples were collected from patients in discovery and independent validation groups at different time points during the disease course. The whole patients were divided into death and survival groups according to their clinical outcomes. Proteomics and pathway/network analyses were used to find the differentially expressed proteins and pathways. Then, we used machine learning to develop a protein classifier which can predict the clinical outcomes of the patients with COVID-19 and help identify the high-risk patients. Finally, a classifier including C-reactive protein, extracellular matrix protein 1, insulin-like growth factor-binding protein complex acid labile subunit, E3 ubiquitin-protein ligase HECW1 and phosphatidylcholine-sterol acyltransferase was determined. The prediction value of the model was verified with an independent patient cohort. This novel model can realize early prediction of 28-day mortality of patients with COVID-19, with the area under curve 0.88 in discovery group and 0.80 in validation group, superior to 4C mortality and E-CURB65 scores. In total, this work revealed a potential protein classifier which can assist in predicting the outcomes of COVID-19 patients and providing new diagnostic directions.

12.
Toxics ; 12(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38393212

RESUMO

In this study, the contents of eight heavy metal(loid)s (As, Pb, Zn, Cd, Cr, Cu, Sb and Tl) in 50 sediment samples from a headwater of Beijiang River were studied to understand their pollution, ecological risk and potential sources. Evaluation indexes including sediment quality guidelines (SDGs), enrichment factor (EF), geo-accumulation index (Igeo), risk assessment code (RAC) and bioavailable metal index (BMI) were used to evaluate the heavy metal(loid)s pollution and ecological risk in the sediments. Pearson's correlation analysis and principal component analysis were used to identify the sources of heavy metal(loid)s. The results showed that the average concentration of heavy metal(loid)s obviously exceeded the background values, except Cr. Metal(loid)s speciation analysis indicated that Cd, Pb, Cu and Zn were dominated by non-residual fractions, which presented higher bioavailability. The S content in sediments could significantly influence the geochemical fractions of heavy metal(loid)s. As was expected, it had the most adverse biological effect to local aquatic organism, followed by Pb. The EF results demonstrated that As was the most enriched, while Cr showed no enrichment in the sediments. The assessment of Igeo suggested that Cd and As were the most serious threats to the river system, while Cr showed almost no contamination in the sediments. Heavy metal(loid)s in sediments in the mining- and smelting-affected area showed higher bioavailability. According to the results of the above research, the mining activities caused heavier heavy metal(loid)s pollution in the river sediment. Three potential sources of heavy metal(loid)s in sediment were distinguished based on the Pearson's correlation analysis and PCA, of which Cd, Pb, As, Zn, Sb and Cu were mainly derived from mining activities, Cr was mainly derived from natural sources, Tl was mainly derived from smelting activities.

13.
JAMA Ophthalmol ; 142(2): 133-139, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236592

RESUMO

Importance: Anti-vascular endothelial growth factor (VEGF) treatment through intravitreal or subretinal administrations has been proven effective for VEGF-driven pediatric vitreoretinal diseases but are not feasible for advanced cases, such as shallow traction retinal detachments or peripheral circumferential retinal detachments which adhere to the lens. Intra-anterior chamber injection (IAcI) of anti-VEGF may be a viable alternative in such cases but needs evaluation. Objective: To investigate the effects and safety of IAcI of anti-VEGF to treat VEGF-driven pediatric vitreoretinal diseases. Design, Setting, and Participants: This was a retrospective observational case series study conducted at Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine in China. The study included 14 eyes of 13 children diagnosed with vitreoretinal disease exhibiting elevated vascular activity between January and August 2023. Intervention: IAcI with ranibizumab. Main Outcomes and Measures: Retinal vascular abnormalities, vitreous hemorrhage resolution, and complications 1 month and 3 months after injection. Results: Of 13 patients included in this study, 12 were male. The mean age was 4.6 years (range, 1 month to 9 years). Six patients were diagnosed with familial exudative vitreoretinopathy, 4 with morning glory syndrome, 1 with retinopathy of prematurity, and 2 with chronic retinal detachments of unknown causes. At 1-month postoperative follow-up, vascular activity had decreased in 14 of 14 eyes. At 3-month follow-up, vascular activity had resolved in 7 of 14 eyes, persisted in 6 of 14 eyes, and reactivated in 1 of 14 eyes. On final observation, no complications were reported. Conclusions and Relevance: These findings support the possibility of treatment using IAcI with ranibizumab to decrease retinal vascular abnormalities in familial exudative vitreoretinopathy or retinopathy of prematurity or related conditions, but further studies are needed to understand more precise benefits and risks. This approach might be considered in cases where intravitreal or subretinal injection are not feasible, recognizing the limitations of these findings and that longer-term outcomes still need to be monitored.


Assuntos
Descolamento Retiniano , Retinopatia da Prematuridade , Recém-Nascido , Humanos , Masculino , Criança , Pré-Escolar , Feminino , Ranibizumab , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Descolamento Retiniano/etiologia , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/tratamento farmacológico , Vitreorretinopatias Exsudativas Familiares/complicações , Vitreorretinopatias Exsudativas Familiares/tratamento farmacológico , Injeção Intracameral , China , Estudos Retrospectivos , Injeções Intravítreas , Bevacizumab
14.
Molecules ; 29(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202823

RESUMO

Quercetin is a flavonoid with significant biological and pharmacological activity. In this paper, quercetin was modified at the 3-OH position. Rutin was used as a raw material. We used methyl protection, Williamson etherification reactions, and then substitution reactions to prepare 15 novel quercetin derivatives containing a quinoline moiety. All these complexes were characterized by 1H NMR, 13C NMR, IR and HRMS. Of these, compound 3e (IC50 = 6.722 µmol·L-1) had a better inhibitory effect on human liver cancer (HepG-2) than DDP (Cisplatin) (IC50 = 26.981 µmol·L-1). The mechanism of the action experiment showed that compound 3e could induce cell apoptosis.


Assuntos
Quercetina , Quinolinas , Humanos , Quercetina/farmacologia , Flavonoides , Quinolinas/farmacologia , Rutina , Analgésicos Opioides
15.
Nanotechnology ; 35(15)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176072

RESUMO

Semiconductor photocatalysis holds significant promise in addressing both environmental and energy challenges. However, a major hurdle in photocatalytic processes remains the efficient separation of photoinduced charge carriers. In this study, TiO2nanorod arrays were employed by glancing angle deposition technique, onto which Ti3C2TxMXene was deposited through a spin-coating process. This hybrid approach aims to amplify the photocatalytic efficacy of TiO2nanorod arrays. Through photocurrent efficiency characterization testing, an optimal loading of TiO2/Ti3C2Txcomposites is identified. Remarkably, this composite exhibits a 40% increase in photocurrent density in comparison to pristine TiO2. This enhancement is attributed to the exceptional electrical conductivity and expansive specific surface area inherent to Ti3C2TxMXene. These attributes facilitate swift transport of photoinduced electrons, consequently refining the separation and migration of electron-hole pairs. The synergistic TiO2/Ti3C2Txcomposite showcases its potential across various domains including photoelectrochemical water splitting and diverse photocatalytic devices. As such, this composite material stands as a novel and promising entity for advancing photocatalytic applications. This study can offer an innovative approach for designing simple and efficient photocatalytic materials composed of MXene co-catalysts and TiO2for efficient water electrolysis on semiconductors.

16.
Chem Asian J ; 19(4): e202300971, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38278764

RESUMO

With the continuous increase in CO2 emissions, primarily from the combustion of coal and oil, the ecosystem faces a significant threat. Therefore, as an effective method to minimize the issue, the Reverse Water Gas Shift (RWGS) reaction which converts CO2 towards CO attracts much attention, is an environmentally-friendly method to mitigate climate change and lessen dependence on fossil fuels. Nevertheless, the inherent thermodynamic stability and kinetic inertness of CO2 is a big challenge under mild conditions. In addition, it remains another fundamental challenge in RWGS reaction owing to CO selectivity issue caused by CO2 further hydrogenation towards CH4 . Up till now, a series of catalysis systems have been developed for CO2 reduction reaction to produce CO. Herein, the research progress of the well-performed heterogeneous catalysts for the RWGS reaction were summarized, including the catalyst design, catalytic performance and reaction mechanism. This review will provide insights into efficient utilization of CO2 and promote the development of RWGS reaction.

17.
J Agric Food Chem ; 72(8): 4277-4291, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38288993

RESUMO

Salt stress significantly impedes plant growth and the crop yield. This study utilized de novo transcriptome assembly and ribosome profiling to explore mRNA translation's role in rice salt tolerance. We identified unrecognized translated open reading frames (ORFs), including 42 upstream transcripts and 86 unannotated transcripts. A noteworthy discovery was the role of a small ORF, Ospep5, in conferring salt tolerance. Overexpression of Ospep5 in plants increased salt tolerance, while its absence led to heightened sensitivity. This hypothesis was corroborated by the findings that exogenous application of the synthetic small peptide Ospep5 bolstered salt tolerance in both rice and Arabidopsis. We found that the mechanism underpinning the Ospep5-mediated salt tolerance involves the maintenance of intracellular Na+/K+ homeostasis, facilitated by upregulation of high-affinity potassium transporters (HKT) and Na+/H+ exchangers (SOS1). Furthermore, a comprehensive multiomics approach, particularly ribosome profiling, is instrumental in uncovering unannotated ORFs and elucidating their functions in plant stress responses.


Assuntos
Arabidopsis , Oryza , Estresse Salino , Tolerância ao Sal/genética , Perfilação da Expressão Gênica , Sódio/metabolismo , Plantas Tolerantes a Sal/metabolismo , Transcriptoma , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo
18.
ACS Appl Mater Interfaces ; 16(1): 853-859, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109311

RESUMO

This study explores the room-temperature synthesis of porous materials and the immobilization of CO2 without the use of metals. The porous aromatic frameworks synthesized at room temperature retain the important functional group structure, and the abundance of carbon-chlorine bonds creates an excellent environment for imidazole linkage. Consequently, a catalyst conducive to the cycloaddition of carbon dioxide is obtained. Hexachloro-p-xylene is explored as the precursor, and a catalyst conducive to carbon dioxide cycloaddition is obtained. The functionalized porous aromatic frameworks (PAF-280-I/B) possess a conversion of 99.6% with a selectivity of 98.9% toward styrene carbonate (SC). The findings of this study can help mitigate the impact of greenhouse gases and enable the production of organic compounds in the circular carbonate platform, turning waste into valuable resources.

19.
Sci Total Environ ; 913: 169665, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159745

RESUMO

Heavy pollution of particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) poses increasing threats to the living environment worldwide. Urban agglomerations often lead to regional rather than local air pollution problems. This study explored the underlying global and local spatial driving mechanisms of PM2.5 variations of the 195 county-level administrative units in the urban agglomeration in the middle reaches of the Yangtze River, China, in 2020, using the global spatial regression and geographically weighted regression methods. Results showed that (1) at the county level, there were spatial variations of PM2.5, fluctuating from 20.1263 µg/m3 to 44.8416 µg/m3. (2) The concentrations of PM2.5 presented a positive spatial autocorrelation with a remarkable direct spatial spillover effect. (3) Forestland, grassland, elevation and ecological restoration were negatively correlated with PM2.5 concentrations, the indirect spatial spillover effect of elevation was noticeable. (4) The indirect reduction effects of ecological restoration on PM2.5 concentrations were substantial in the Wuhan urban agglomeration. (5) The reduction effect of forestland, grassland, ecological restoration and elevation on PM2.5 showed a noticeable spatial heterogeneity. In the future, it is suggested regional variability and the spatial spillover effect of air pollution be taken into account in environmental governance. Simultaneously, utilization of the mitigation effect of ecological restoration on PM2.5 is anticipated for the concerted effort in air pollution governance.

20.
ACS Omega ; 8(50): 48326-48335, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144075

RESUMO

Recently, there have been reports of lead halide perovskite-based sensors demonstrating their potential for gas sensing applications. However, the toxicity of lead and the instability of lead-based perovskites have limited their applications. This study addressed this issue by developing a H2S gas sensor based on a lead-free CsCu2I3 film prepared using a one-step CVD method. The sensor demonstrated excellent sensing properties, including a high response and selectivity toward H2S, even at low concentrations (0.2 ppm) at room temperature. Furthermore, a reasonable sensing mechanism was proposed. It is suggested that the sensing mechanism sheds light on the role of defects in perovskite materials, the impact of H2S as an electron donor, and the occurrence of reversible chemical reactions. These findings suggest that lead-free CsCu2I3 has great potential in the field of H2S gas sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...