Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404694, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857532

RESUMO

Due to the broadband response and low selectivity of external light, negative photoconductivity (NPC) effect holds great potential applications in photoelectric devices. Herein, different photoresponsive carbon nanodots (CDs) are prepared from diverse precursors and the broadband response from the NPC CDs are utilized to achieve the optoelectronic logic gates and optical imaging for the first time. In detail, the mcu-CDs which are prepared by the microwave-assisted polymerization of citric acid and urea possess the large specific surface area and abundant hydrophilic groups as sites for the adsorption of H2O molecules and thereby present a high conductivity in dark. Meanwhile, the low affinity of mcu-CDs to H2O molecules permits the light-induced desorption of H2O molecules by heat effect and thus endow the mcu-CDs with a low conductivity under illumination. The easy absorption and desorption of H2O molecules contribute to the extraordinary NPC of mcu-CDs. With the broadband NPC response in CDs, the optoelectronic logic gates and flexible optical imaging system are established, achieving the applications of "NOR" or "NAND" logic operations and high-quality optical images. These findings unveil the unique optoelectronic properties of CDs, and have the potential to advance the applications of CDs in optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA