Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(5): 2523-2531, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705014

RESUMO

Perilla frutescens (L.), a traditional edible and medicinal crop, contains diverse triterpenes with multiple pharmacological properties. However, the biosynthesis of triterpenes in perilla remains rarely revelation. In this study, nine putative 2,3-oxidosqualene cyclase (OSC) genes (PfOSC1-9) were screened from the P. frutescens genome and functionally characterized by heterologous expression. Camelliol C, a triterpenol with pharmacological effect, was first identified as abundant in perilla seeds, and the camelliol C synthase (PfOSC7) was first identified in P. frutescens utilizing a yeast system. In addition, PfOSC2, PfOSC4, and PfOSC9 were identified as cycloartenol, lupeol, and ß-amyrin synthase, respectively. Molecular docking and site-directed mutagenesis revealed that changes in Leu253 of PfOSC4, Ala480 of PfOSC7, and Trp257 of PfOSC9 might lead to variations of catalytic specificity or efficiency. These results will provide key insights into the biosynthetic pathways of triterpenoids and have great significance for germplasm breeding in P. frutescens.


Assuntos
Perilla frutescens , Triterpenos , Perilla frutescens/metabolismo , Simulação de Acoplamento Molecular , Melhoramento Vegetal , Triterpenos/metabolismo
2.
J Agric Food Chem ; 70(26): 8075-8084, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729682

RESUMO

Camellia sasanqua is an important economic plant that is rich in lipophilic triterpenols with pharmacological activities including antiallergic, anti-inflammatory, and anticancer activities. However, the key enzymes related to triterpene biosynthesis have seldom been studied in C. sasanqua. Oxidosqualene cyclases (OSCs) are the rate-limiting enzymes related to triterpene biosynthesis. In this study, seven putative OSC genes (CsOSC1-7) were mined from the C. sasanqua transcriptome. Six CsOSCs were characterized for the biosynthesis of diverse triterpene skeletons, including α-amyrin, ß-amyrin, δ-amyrin, dammarenediol-II, ψ-taraxasterol, taraxasterol, and cycloartenol by the heterologous expression system. CsOSC3 was a multiple functional α-amyrin synthase. Three key residues, Trp260, Tyr262, and Phe415, are critical to the catalytic performance of CsOSC3 judging from the results of molecular docking and site-directed mutagenesis. These findings provide important insights into the biosynthesis pathway of triterpenes in C. sasanqua.


Assuntos
Camellia , Triterpenos , Camellia/genética , Camellia/metabolismo , Simulação de Acoplamento Molecular , Esqualeno/análogos & derivados , Esqualeno/metabolismo , Triterpenos/química
3.
Inorg Chem ; 61(21): 8366-8378, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35588477

RESUMO

Manganese-based compounds are expected to become promising candidates for lithium-ion battery anodes by virtue of their high theoretical specific capacity and low conversion potential. However, their application is hindered by their inferior electrical conductivity and drastic volume variations. In this work, a unique heterostructure composed of MnO and MnS spatially confined in pyrolytic carbon microspheres (MnO@MnS/C) was synthesized through an integrated solvothermal method, calcination, and low-temperature vulcanization technology. In this architecture, heterostructured MnO@MnS nanoparticles (∼10 nm) are uniformly embedded into the carbonaceous microsphere matrix to maintain the structural stability of the composite. Benefiting from the combination of structural and compositional features, the MnO@MnS/C enables abundance in electrochemically active sites, alleviated volumetric variation, a rich conductive network, and enhanced lithium-ion diffusion kinetics, thus yielding remarkable rate capability (1235 mAh·g-1 at 0.2 A·g-1 and 608 mAh·g-1 at 3.2 A·g-1) and exceptional cycling stability (522 mAh·g-1 after 2000 cycles at 3.0 A·g-1) as a competitive anode material for lithium-ion batteries. Density functional theory calculations unveil that the heterostructure promotes the transfer of electrons with improved conductivity and also accelerates the migration of lithium ions with reduced polarization resistance. This combined with the enhancement brought by spatial confinement endows the MnO@MnS/C with remarkable lithium storage performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...