Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559802

RESUMO

The variable noise spectrum for many actual application scenarios requires a sound absorber to adapt to this variation. An adjustable sound absorber of multiple parallel-connection Helmholtz resonators with tunable apertures (TA-MPCHRs) is prepared by the low-force stereolithography of photopolymer resin, which aims to improve the applicability of the proposed sound absorber for noise with various frequency ranges. The proposed TA-MPCHR metamaterial contains five metamaterial cells. Each metamaterial cell contains nine single Helmholtz resonators. It is treated as a basic structural unit for an array arrangement. The tunable aperture is realized by utilizing four segments of extendable cylindrical chambers with length l0, which indicates that the length of the aperture l is in the range of [l0, 4l0], and that it is tunable. With a certain group of specific parameters for the proposed TA-MPCHR, the influence of the tunable aperture with a variable length is investigated by acoustic finite element simulation with a two-dimensional rotational symmetric model. For the given noise spectrum of certain actual equipment with four operating modes, the TA-MPCHR sample with a limited total thickness of 40 mm is optimized, which is made of photopolymer resin by the low-force stereolithography, and its actual average sound absorption coefficients for the frequency ranges of 500-800 Hz, 550-900 Hz, 600-1000 Hz and 700-1150 Hz reach 0.9203, 0.9202, 0.9436 and 0.9561, respectively. Relative to common non-adjustable metamaterials, the TA-MPCHR made of photopolymer resin can reduce occupied space and improve absorption efficiency, which is favorable in promoting its practical applications in the noise pollution prevention.

2.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433077

RESUMO

Polyisoprene, with a high degree of polymerization, is the main component of natural rubber. In the industrial production process, it is necessary to adjust the length of the macromolecule of polyisoprene to improve its plasticity. It is thus of vital importance to explore the effect of the degree of polymerization of polyisoprene on its properties, e.g., mechanical property and thermal property. Molecular dynamics simulations link microstructure to macroscopic properties. In this paper, Moltemplate was used to establish polyisoprene models with different degrees of polymerization, and the mechanical properties of polyisoprene under uniaxial tension were analyzed under an OPLS all-atom force field. The results showed that the strength and elastic modulus of the material increased with the increase in the degree of polymerization of the molecular chain. In the process of tensile loading, the non-bonded potential energy played a dominant role in the change of the total system potential energy. Then, the thermal conductivity of polyisoprene with different degrees of polymerization was calculated by the non-equilibrium molecular dynamics method (NEMD). The thermal conductivity of PI was predicted to converge to 0.179 W/(m·K). The mechanism of thermal conductivity of the polymer containing branched chains was also discussed and analyzed. The research content of this paper aims to provide theoretical support for improving the mechanical and thermal properties of natural rubber base materials.

3.
Materials (Basel) ; 15(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234084

RESUMO

The mechanical properties of resin samples in low-force stereolithography additive manufacturing were affected by the printing orientation, and were investigated and optimized to achieve excellent single or comprehensive tensile strength, compressive strength, and flexural modulus. The resin samples were fabricated using a Form3 3D printer based on light curing technology according to the corresponding national standards, and they were detected using a universal testing machine to test their mechanical properties. The influence of the printing orientation was represented by the rotation angle of the resin samples relative to the x-axis, y-axis and z-axis, and the parameters was selected in the range 0°-90° with an interval of 30°. The multiple regression models for the mechanical properties of the prepared resin samples were obtained based on least square estimation, which offered a foundation from which to optimize the parameters of the printing orientation by cuckoo search algorithm. The optimal parameters for the tensile strength, compressive strength and flexural modulus were 'α = 45°, ß = 25°, γ = 90°', 'ß = 0°, ß = 51°, γ = 85°' and 'α = 26°, ß = 0°, γ = 90°', respectively, which obtained the improvements of 80.52%, 15.94%, and 48.85%, respectively, relative to the worst conditions. The mechanism was qualitatively discussed based on the force analysis. The achievements obtained in this study proved that optimization of the printing orientation could improve the mechanical properties of the fabricated sample, which provided a reference for all additive manufacturing methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA