Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
2.
Front Oncol ; 14: 1399544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919533

RESUMO

Recent years have seen a marked increase in research on chimeric antigen receptor T (CAR-T) cells, with specific relevance to the treatment of hematological malignancies. Here, the structural principles, iterative processes, and target selection of CAR-T cells for therapeutic applications are described in detail, as well as the challenges faced in the treatment of solid tumors and hematological malignancies. These challenges include insufficient infiltration of cells, off-target effects, cytokine release syndrome, and tumor lysis syndrome. In addition, directions in the iterative development of CAR-T cell therapy are discussed, including modifications of CAR-T cell structures, improvements in specificity using multi-targets and novel targets, the use of Boolean logic gates to minimize off-target effects and control toxicity, and the adoption of additional protection mechanisms to improve the durability of CAR-T cell treatment. This review provides ideas and strategies for the development of CAR-T cell therapy through an in-depth exploration of the underlying mechanisms of action of CAR-T cells and their potential for innovative modification.

3.
Signal Transduct Target Ther ; 9(1): 159, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937432

RESUMO

The ORF9b protein, derived from the nucleocapsid's open-reading frame in both SARS-CoV and SARS-CoV-2, serves as an accessory protein crucial for viral immune evasion by inhibiting the innate immune response. Despite its significance, the precise regulatory mechanisms underlying its function remain elusive. In the present study, we unveil that the ORF9b protein of SARS-CoV-2, including emerging mutant strains like Delta and Omicron, can undergo ubiquitination at the K67 site and subsequent degradation via the proteasome pathway, despite certain mutations present among these strains. Moreover, our investigation further uncovers the pivotal role of the translocase of the outer mitochondrial membrane 70 (TOM70) as a substrate receptor, bridging ORF9b with heat shock protein 90 alpha (HSP90α) and Cullin 5 (CUL5) to form a complex. Within this complex, CUL5 triggers the ubiquitination and degradation of ORF9b, acting as a host antiviral factor, while HSP90α functions to stabilize it. Notably, treatment with HSP90 inhibitors such as GA or 17-AAG accelerates the degradation of ORF9b, leading to a pronounced inhibition of SARS-CoV-2 replication. Single-cell sequencing data revealed an up-regulation of HSP90α in lung epithelial cells from COVID-19 patients, suggesting a potential mechanism by which SARS-CoV-2 may exploit HSP90α to evade the host immunity. Our study identifies the CUL5-TOM70-HSP90α complex as a critical regulator of ORF9b protein stability, shedding light on the intricate host-virus immune response dynamics and offering promising avenues for drug development against SARS-CoV-2 in clinical settings.


Assuntos
COVID-19 , Proteínas Culina , Proteínas de Choque Térmico HSP90 , SARS-CoV-2 , Ubiquitinação , Replicação Viral , Humanos , Proteínas Culina/genética , Proteínas Culina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , COVID-19/virologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/imunologia , Ubiquitinação/genética , Células HEK293 , Benzoquinonas/farmacologia , Estabilidade Proteica , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Lactamas Macrocíclicas
4.
Ann Hematol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916741

RESUMO

Immune thrombocytopenia (ITP) is the most common autoimmune disorder characterized by decreased platelet counts and impaired platelet production. Eltrombopag has been demonstrated to be safe and effective for children with ITP. It is reported eltrombopag can achieve a sustained response off treatment. However, data on its overall efficacy and safety profile are scarce in children. This study aimed to investigate the long-term efficacy of eltrombopag in children with ITP. Treatment overall response (OR), complete response (CR), response (R), durable response (DR), no response (NR), treatment free remission (TFR), and relapse rate, were assessed in 103 children with ITP during eltrombopag therapy. The OR rate, CR rate, R rate, DR rate, NR rate, TFR rate, and relapse rate were 67.0%, 55.3%, 11.7%, 56.3%, 33.0%, 60%, 36.2%, respectively. Importantly, we discovered that newly diagnosed ITP patients showed a higher DR rate, TFR rate and lower relapse rate compared to persistent and chronic ITP patients. Furthermore, the CR rate, DR rate, and TFR rate of 5 patients under six months were 100%. None of them suffered relapse. The most common adverse event (AEs) was hepatotoxicity (7.77%). Our study highlighted the critical role of eltrombopag as the second-line treatment in children with ITP who were intolerant to first-line therapy.

5.
J Am Chem Soc ; 146(23): 15730-15739, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38776525

RESUMO

NAD(P)H cofactor is a critical energy and electron carrier in biocatalysis and photosynthesis, but the artificial reduction of NAD(P)+ to regenerate bioactive 1,4-NAD(P)H with both high activity and selectivity is challenging. Herein, we found that a coupled system of a Ni3S2 electrode and a Rh complex in an electrolyte (denoted as Ni3S2-Rh) can catalyze the reduction of NAD(P)+ to 1,4-NAD(P)H with superior activity and selectivity. The optimized selectivity in 1,4-NADH can be up to 99.1%, much higher than that for Ni3S2 (80%); the normalized activity of Ni3S2-Rh is about 5.8 times that of Ni3S2 and 13.2 times that of the Rh complex. The high performance of Ni3S2-Rh is attributed to the synergistic effect between metal sulfides and Rh complex. The NAD+ reduction reaction proceeds via a concerted electron-proton transfer (CEPT) mechanism in the Ni3S2-Rh system, in which Ni3S2 acts as a proton and electron-transfer mediator to accelerate the formation of Rh hydride (Rh-H), and then the Rh-H regioselectively transfers the hydride to NAD+ to form 1,4-NADH. The artificial system Ni3S2-Rh essentially mimics the functions of ferredoxin-NADP+ reductase in nature.

6.
Plant Foods Hum Nutr ; 79(2): 381-386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436827

RESUMO

Edgeworthia gardneri (Wall.) Meisn., a member of the genus Edgeworthia in the family Thymelaeaceae, has long been applied as an edible and medicinal plant in China. E. gardneria has a hypoglycemic effect and is used to prepare daily drinks for the prevention and treatment of diabetes. However, the hypoglycemic substances involved remain unknown. The present study aimed to screen the α-glucosidase-inhibitors of E. gardneri and analyze its chemical profile using a ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method. As a result, the ethyl acetate fraction (EAF) had significant α-glucosidase-inhibitory and antioxidant activities but did not show an α-amylase-inhibitory activity. A total of 67 compounds were identified in the EAF by UPLC-Q-TOF-MS/MS analysis; among them, 48 compounds were first discovered in the genus Edgeworthia. Additionally, five flavonoids, namely, isoorintin, secoisolaricirinol, tiliroside, chrysin, and kaempferol, had α-glucosidase-inhibitory activities. Rutin had a α-amylase-inhibitory activity. Daphnoretin, a kind of coumarin, has α-glucosidase and α-amylase-inhibitory activities. These findings enrich the chemical library of E. gardneria. EAF has a selective α-glucosidase-inhibitory activity, and flavonoids and coumarins may be the active components of EAF. E. gardneria has important value for developing multiple-target hypoglycemic drugs.


Assuntos
Antioxidantes , Flavonoides , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Espectrometria de Massas em Tandem , Thymelaeaceae , Inibidores de Glicosídeo Hidrolases/análise , Inibidores de Glicosídeo Hidrolases/farmacologia , Espectrometria de Massas em Tandem/métodos , Thymelaeaceae/química , Hipoglicemiantes/análise , Hipoglicemiantes/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Antioxidantes/análise , Antioxidantes/farmacologia , alfa-Glucosidases , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/análise , alfa-Amilases/antagonistas & inibidores , China
7.
Viruses ; 16(2)2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38400018

RESUMO

Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Flavivirus/genética , Zika virus/genética , Zika virus/metabolismo , Virulência , Replicação Viral , Proteínas/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Antivirais/metabolismo , Mamíferos
8.
Cell Death Discov ; 10(1): 93, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388451

RESUMO

Parkinson's disease (PD) is characterized by the formation of Lewy body in dopaminergic neurons in the substantia nigra pars compacta (SNpc). Alpha-synuclein (α-syn) is a major component of Lewy body. Autophagy eliminates damaged organelles and abnormal aggregated proteins. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays roles in protecting dopaminergic neurons against neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the relationship between Trx-1 and α-syn in PD is still unknown. In the present study, the movement disorder and dopaminergic neurotoxicity in MPTP-treated mice were improved by Trx-1 overexpression and were aggravated by Trx-1 knockdown in the SNpc in mice. The expression of α-syn was increased in the SNpc of MPTP-treated mice, which was inhibited by Trx-1 overexpression and was exacerbated in Trx-1 knockdown mice. Autophagosomes was increased under electron microscope after MPTP treatment, which were recovered in Trx-1 overexpressing mice and were further increased in Trx-1 knockdown in the SNpc in mice. The expressions of phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced putative kinase 1 (PINK1), Parkin, LC3 II and p62 were increased by MPTP, which were blocked in Trx-1 overexpressing mice and were further increased in Trx-1 knockdown mice. Cathepsin D was decreased by MPTP, which was restored in Trx-1 overexpressing mice and was further decreased in Trx-1 knockdown mice. The mRFP-GFP-LC3 green fluorescent dots were increased by 1-methyl-4-phenylpyridinium (MPP+) and further increased in Trx-1 siRNA transfected PC12 cells, while mRFP-GFP-LC3 red fluorescent dots were increased in Trx-1 overexpressing cells. These results indicate that Trx-1 may eliminate α-syn in PD mice through potentiating autophagy-lysosome pathway.

9.
BMJ Open Diabetes Res Care ; 12(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238025

RESUMO

Elevated serum uric acid levels are an independent predictor of occurrence and development of chronic kidney disease (CKD) and are strongly associated with prognosis. Several clinical trials have demonstrated the benefits of sodium-glucose cotransporter-2 (SGLT-2) inhibitors. To evaluate and rank the effects and safety of various SGLT-2 for serum uric acid levels in patients with CKD. We performed a systematic PubMed, Embase, Scopus, and Web of Science search, including studies published before July 1, 2023. Two researchers independently extracted data on study characteristics and outcomes and assessed study quality using the Cochrane Collaboration's risk of bias tool 2. The gemtc package of R software was used to perform network meta-analysis within a Bayesian framework. The primary outcome was serum uric acid levels, and the secondary outcome was adverse events. Effect sizes are reported as standardized mean differences (SMDs), risk ratio (RR), and 95% CI, respectively. The certainty of evidence was evaluated using Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria. Eight RCTs (9367 participants) were included in this meta-analysis. The results of the paired meta-analysis showed that SGLT-2 inhibitors significantly reduced serum uric acid levels in patients with CKD compared with the placebo group (SMD -0.22; 95% CI -0.42 to -0.03; GRADE: low). Pooled analysis of any adverse events reported in the included studies showed similar incidence rates in the SGLT-2 inhibitor and placebo groups (RR: 0.99; 95% CI 0.97 to 1.00; p=0.147; GRADE: high). Subgroup analysis showed a statistically significant difference only for tofogliflozin. Further network meta-analysis showed that dapagliflozin 10 mg and ipragliflozin 50 mg may be the most effective in reducing uric acid levels. SGLT-2 inhibitors significantly reduced serum uric acid levels in patients with CKD, and dapagliflozin 10 mg and ipragliflozin 50 mg may be the optimal dosages. SGLT-2 inhibitors hold great promise as an antidiabetic therapeutic option for patients with CKD who have elevated serum uric acid levels. PROSPERO registration number: CRD42023456581.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Tiofenos , Humanos , Ácido Úrico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Metanálise em Rede , Teorema de Bayes , Insuficiência Renal Crônica/tratamento farmacológico , Glucose , Sódio
10.
Fitoterapia ; 172: 105713, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949304

RESUMO

The chemical structure of sinoacutine is formed by a phenanthrene nucleus and an ethylamine bridge. Because it has a similar parent structure to morphine, it is subdivided into morphinane. At present, all reports have pointed out that the basic skeleton of morphine alkaloids is salutaridine (the isomer of sinoacutine), which is generated by the phenol coupling reaction of (R)-reticuline. This study shows that the biosynthetic precursors of sinoacutine and salutaridine are different. In this paper, the sinoacutine synthetase (SinSyn) gene was cloned from Sinomenium acutum and expressed SinSyn protein. Sinoacutine was produced by SinSyn catalyzed (S)-reticuline, according to the results of enzyme-catalyzed experiments. The optical activity, nuclear magnetic resonance, and mass spectrum of sinoacutine and salutaridine were analyzed. The classification and pharmacological action of isoquinoline alkaloids were discussed. It was suggested that sinoacutine should be separated from morphinane and classified as sinomenine alkaloids.


Assuntos
Alcaloides , Morfinanos , Estrutura Molecular , Morfinanos/química , Morfinanos/metabolismo , Morfinanos/farmacologia , Alcaloides/farmacologia , Derivados da Morfina
11.
World J Clin Cases ; 11(31): 7656-7662, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38078131

RESUMO

BACKGROUND: This report delves into the diagnostic and therapeutic journey undertaken by a patient with Sneddon's syndrome (SS) and cerebral venous sinus thrombosis (CVST). Particular emphasis is placed on the comprehensive elucidation of SS's clinical manifestations, the intricate path to diagnosis, and the exploration of potential underlying mechanisms. CASE SUMMARY: A 26-year-old woman presented with recurrent episodes of paroxysmal unilateral limb weakness accompanied by skin mottling, seizures, and cognitive impairment. Digital subtraction angiography revealed CVST. Despite negative antiphospholipid antibody results, skin biopsy indicated chronic inflammatory cell infiltration. The patient was treated using anticoagulation, antiepileptic therapy, and supportive care, which resulted in symptom improvement. The coexistence of SS and CVST is rare and the underlying pathophysiology remains uncertain. This case underscores the challenge in diagnosis and highlights the need for early clinical differentiation to facilitate accurate assessment and prompt intervention. CONCLUSION: This article has reported and analyzed the clinical data, diagnosis, treatment, and prognosis of a case of SS with CVST and reviewed the relevant literature to improve the clinical understanding of this rare condition.

12.
Nat Prod Res ; : 1-7, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661314

RESUMO

2,7,2'-Trihydroxy-3,4,4'7'-tetramethoxy-1,1'-biphenanthrene (1), a previously undescribed biphenanthrene, and five known phenanthrenes, i.e. 2,5-dihydroxy-4-methoxy-9,10-dihydroxyphenanthrene (2), 2,4-dihydroxy -7-methoxy-9,10-dihydroxyphenanthrene (3), 7-hydroxy-2-methoxy-phenanthrene-1,4-dione (4), 7-hydroxy-2-methoxy-9,10-dihydro-phenanthrene-1,4-dione (5), and 4,4',7,7'-tetrahydroxy-2,2'-dimethoxy-9,9',10,10'-tetrahydro-1,1'-biphenanthrene (6) were isolated from the whole plant (stems, leaves, roots and fruits) of Liparis nervosa (Thunb.) Lindl., which is a medicinal plant of the genus Liparis in the Orchidaceae family. The structures of isolates were identified using spectroscopic methods, including NMR and mass spectrometry. Additionally, the cytotoxic potency of all the isolates against human lung cancer A549 cell line was evaluated by an MTT assay. All the isolated compounds showed cytotoxic activities with IC50 values in the range of 10.20 ± 0.81 to 42.41 ± 2.34 µM. The obtained data highlight the importance of L. nervosa as a source of natural lead compounds for cancer therapy.

13.
Cereb Cortex ; 33(22): 11102-11111, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37746807

RESUMO

Olfaction is a crucial sense that is essential for the well-being and survival of individuals. Olfactory bulb (OB) is the first olfactory relay station, and its function depends on newly generated neurons from the subventricular zone (SVZ). These newly born neurons constantly migrate through the rostral migratory stream to integrate into existing neural networks within the OB, thereby contributing to olfactory information processing. However, the mechanisms underlying the contribution of SVZ adult neurogenesis to OB neurogenesis remain largely elusive. Adult neurogenesis is a finely regulated multistep process involving the proliferation of adult neural stem cells (aNSCs) and neural precursor cells, as well as the migration and differentiation of neuroblasts, and integration of newly generated neurons into preexisting neuronal circuitries. Recently, extensive studies have explored the mechanism of SVZ and OB neurogenesis. This review focused on elucidating various molecules and signaling pathways associated with OB neurogenesis dependent on the SVZ function. A better understanding of the mechanisms underlying the OB neurogenesis on the adult brain is an attractive prospect to induce aNSCs in SVZ to generate new neurons to ameliorate olfactory dysfunction that is involved in various diseases. It will also contribute to developing new strategies for the human aNSCs-based therapies.


Assuntos
Células-Tronco Neurais , Humanos , Células-Tronco Neurais/metabolismo , Ventrículos Laterais , Bulbo Olfatório , Neurônios/fisiologia , Neurogênese/fisiologia , Movimento Celular
14.
Food Chem (Oxf) ; 7: 100179, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37583676

RESUMO

Sweet corn is perishable and have limited harvest duration and shelf life due to their quality deterioration. Reactive oxygen species (ROS) are one of the most predominant factors for maintaining quality of sweet corn during and after harvest. Brassinosteroids (BRs) can enhance the activity of antioxidant enzymes and decrease the ROS level in plants. In this study, we found that a bioactive BR (24-epibrassinolide, EBR) treatment before harvest markedly inhibited change of quality indicators (MDA content, weight loss rate, and soluble sugar content) during and after harvest. Further analysis revealed that EBR promoted the activity and transcriptions of antioxidant enzymes, maintaining lower ROS level in kernels. Meanwhile, exogenous EBR increased the expression level of genes controlling sucrose transport in sweet corn kernels. Bioinformatics and binding analysis identified that BR transcription factor ZmBES1/ZmBZR1-10 might potentially bind to and upregulate transcriptions of antioxidant enzyme genes including SOD and POD genes, and sucrose transport-related genes including SUT and SWEET genes. These results indicated that exogenous application of EBR ameliorates quality during and after harvest by improving the antioxidant capacity and photosynthetic assimilates accumulation rate of sweet corn, thus prolonging harvest duration and shelf life in sweet corn.

15.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446367

RESUMO

WUSCHEL (WUS) is a crucial transcription factor in regulating plant stem cell development, and its expression can also improve genetic transformation. However, the ectopic expression of WUS always causes pleiotropic effects during genetic transformation, making it important to understand the regulatory mechanisms underlying these phenomena. In our study, we found that the transient expression of the maize WUS ortholog ZmWus2 caused severe leaf necrosis in Nicotiana benthamiana. We performed transcriptomic and non-target metabolomic analyses on tobacco leaves during healthy to wilted states after ZmWus2 transient overexpression. Transcriptomic analysis revealed that ZmWus2 transformation caused active metabolism of inositol trisphosphate and glycerol-3-phosphate, while also upregulating plant hormone signaling and downregulating photosystem and protein folding pathways. Metabolomic analysis mainly identified changes in the synthesis of phenylpropanoid compounds and various lipid classes, including steroid synthesis. In addition, transcription factors such as ethylene-responsive factors (ERFs), the basic helix-loop-helix (bHLH) factors, and MYBs were found to be regulated by ZmWus2. By integrating these findings, we developed a WUS regulatory model that includes plant hormone accumulation, stress responses, lipid remodeling, and leaf necrosis. Our study sheds light on the mechanisms underlying WUS ectopic expression causing leaf necrosis and may inform the development of future genetic transformation strategies.


Assuntos
Nicotiana , Transcriptoma , Nicotiana/genética , Nicotiana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lipídeos
16.
Plant Physiol ; 192(2): 1603-1620, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36879425

RESUMO

Pectin methylesterification in guard cell (GC) walls plays an important role in stomatal development and stomatal response to external stimuli, and pectin methylesterase inhibitors (PMEIs) modulate pectin methylesterification by inhibition of pectin methylesterase (PME). However, the function of PMEIs has not been reported in stomata. Here, we report the role of Arabidopsis (Arabidopsis thaliana) PECTIN METHYLESTERASE INHIBITOR18 in stomatal dynamic responses to environmental changes. PMEI18 mutation increased pectin demethylesterification and reduced pectin degradation, resulting in increased stomatal pore size, impaired stomatal dynamics, and hypersensitivity to drought stresses. In contrast, overexpression of PMEI18 reduced pectin demethylesterification and increased pectin degradation, causing more rapid stomatal dynamics. PMEI18 interacted with PME31 in plants, and in vitro enzymatic assays demonstrated that PMEI18 directly inhibits the PME activity of PME31 on pectins. Genetic interaction analyses suggested that PMEI18 modulates stomatal dynamics mainly through inhibition of PME31 on pectin methylesterification in cell walls. Our results provide insight into the molecular mechanism of the PMEI18-PME31 module in stomatal dynamics and highlight the role of PMEI18 and PME31 in stomatal dynamics through modulation of pectin methylesterification and distribution in GC walls.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Pectinas/metabolismo
17.
J Med Virol ; 95(3): e28610, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36840407

RESUMO

Tick-borne encephalitis virus (TBEV) is the causative agent of a potentially fatal neurological infection in humans. Investigating virus-host interaction is important for understanding the pathogenesis of TBEV and developing effective antiviral drugs against this virus. Here, we report that mammalian ste20-like kinase 3 (MST3) is involved in the regulation of TBEV infection. The knockdown or knockout of MST3, but not other mammalian ste20-like kinase family members, inhibited TBEV replication. The knockdown of MST3 also significantly reduced TBEV replication in mouse primary astrocytes. Life cycle analysis indicated that MST3 remarkably impaired virion assembly efficiency and specific infectivity by respectively 59% and 95% in MST3-knockout cells. We further found that MST3 interacts with the viral proteins NS2A and prM; and MST3 enhances the interaction of NS2A-NS4A. Thus, MST3-NS2A complex plays a major role in recruiting prM-E heterodimers and NS4A and mediates the virion assembly. Additionally, we found that MST3 was biotinylated and combined with other proteins (e.g., ATG5, Sec24A, and SNX4) that are associated with the cellular membrane required for TBEV infection. Overall, our study revealed a novel function for MST3 in TBEV infection and identified as a novel host factor supporting TBEV assembly.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Animais , Camundongos , Humanos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Proteínas Virais/metabolismo , Mamíferos/metabolismo , Proteínas de Transporte Vesicular
19.
Virus Res ; 326: 199058, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731631

RESUMO

Gyrovirus (GyV) is a widespread ssDNA virus with a high population diversity, and several of its species, including the chicken anemia virus (CAV), gyrovirus galga 1 (GyG1), and gyrovirus homsa 1 (GyH1), have been shown to be pathogenic to poultry. The evolution of these viruses, however, is still unclear. Our study analyzed epidemiology and molecular evolution of three species of GyVs (CAV, GyG1, and GyH1) from 2018 to 2019 in China. The survey results indicated that GyV was widespread in China. It is vital to consider the coinfections among the three species of GyV. The phylogenetic analysis showed that CAV was divided into three clades and GyG1 and GyH1 were divided into two clades. Based on the recombination analysis, CAV and GyG1 had similar recombination regions associated with viral replication and transcription. Furthermore, the substitution rates for CAV and GyG1 were approximately 6.09 × 10-4 and 2.784 × 10-4 nucleotides per site per year, respectively. The high substitution rate and recombination were the main factors for the high diversity of GyVs. Unfortunately, GyH1 strains have not been discovered in enough numbers to allow evolutionary analysis. The GyVs had several positively selected sites, possibly related to their potential to escape the host immune response. In summary, our study provides insights into the time of origin, evolution rate, and recombination of GyV for assessing their evolutionary process and genetic diversity.


Assuntos
Vírus da Anemia da Galinha , Infecções por Circoviridae , Gyrovirus , Doenças das Aves Domésticas , Animais , Gyrovirus/genética , Filogenia , Vírus da Anemia da Galinha/genética , Doenças das Aves Domésticas/epidemiologia , China/epidemiologia , Galinhas
20.
Plasmid ; 125: 102670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36828204

RESUMO

The effective utilization of traditional Chinese medicine (TCM) has been challenged by the difficulty to accurately distinguish between similar plant varieties. The stability and conservation of the chloroplast genome can aid in resolving genotypes. Previous studies using nuclear sequences and molecular markers have not effectively differentiated the species from related taxa, such as Machilus leptophylla, Hanceola exserta, Rubus bambusarum, and Rubus henryi. This study aimed to characterize the chloroplast genomes of these four plant species, and analyze their simple sequence repeats (SSRs) and phylogenetic positions. The results demonstrated the four chloroplast genomes consisted of 152.624 kb, 153.296 kb, 156.309 kb, and 158.953 kb in length, involving 124, 130, 129, and 131 genes, respectively. They also contained four specific regions with mononucleotide being the class with the most members. Moreover, these repeating types of SSR were various in individual class. Phylogenetic analysis showed that M. leptophylla was clustered with M. yunnanensis, and H. exserta was confirmed as belonging to the family Ocimeae. Additionally, R. bambusarum and R. henryi were grouped together but differed in their SSR features, indicating that they were not the same species. This research provides evidence for resolving species and contributes new genetic information for further studies.


Assuntos
Genoma de Cloroplastos , Filogenia , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...