Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 671
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411840, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115358

RESUMO

Atherosclerosis is a primary global health concern due to its high morbidity and mortality. This disease is characterized by a complex interplay of chronic inflammation, oxidative stress, and proteolytic enzymes. Traditional imaging techniques struggle to capture the dynamic biochemical processes within atherosclerotic plaques. Herein, we have developed a novel unimolecular photoacoustic probe (UMAPP) that combines specific recognition sites for neutrophil elastase (NE) and the redox pair O2•‒/GSH into a cohesive molecular platform, allowing in vivo monitoring of oxidative stress and activated neutrophils within plaques. UMAPP features a boron-dipyrromethene (BODIPY) core linked to a hydrophilic NE-cleavable tetrapeptide, and dual oxidative stress-responsive catechol moieties, enabling NE-mediated modulation of photoinduced electron transfer, affecting the photoacoustic intensity at 685 nm (PA685), while oxidation and reduction of the catechol groups by O2•‒ and GSH lead to reversible, ratiometric changes in the photoacoustic spectrum. Preliminary applications of UMAPP have successfully differentiated between atherosclerotic and healthy mice, assessed the impact of pneumonia on plaque composition, and validated the probe's efficacy in drug-treatment studies, detecting molecular changes prior to observable histopathological alterations. UMAPP's integrated molecular imaging approach holds significant promise for advancing the diagnosis and management of atherosclerosis by enabling earlier and more precise detection of vulnerable plaques.

2.
Heliyon ; 10(14): e34215, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092253

RESUMO

Shezhi Huangling Decoction (SHD) has been proven clinically effective in regulating metabolic and immune homeostasis in the treatment of glioma. The investigation aimed to deconstruct the active constituents and mechanisms of SHD. Effects of SHD on malignant characteristics of HS683 and KNS89 cells have been investigated by CCK-8, clone formation, flow cytometry, and Transwell assays. A mouse xenograft model was established to assess the effect of SHD or SHD + temozolomide (TMZ) in vivo. A total of 461 constituents were found from SHD in UPLC/Q-TOF-MS/MS analysis. Functional enrichment analysis showed that pathway in cancer, proteoglycans in cancer, regulation of epithelial cell proliferation, inflammation/immune, gliogenesis, brain development, cell adhesion, and autophagy could participate in the treatment of SHD. Additionally, 9 hub genes (AKT1, TP53, CTNNB1, STAT3, EGFR, VEGFA, PIK3CA, ERBB2, and HIF1A) were identified as hub genes. Moreover, we found that SHD may greatly reduce the migration and accelerate apoptosis of HS683 and KNS89 cells. Additionally, SHD coordinates TMZ to restrict tumor growth were found in the mice. Our results suggest that the malignant behaviors of glioma cells are suppressed by SHD and the mechanism may be closing on the inhibition of the PI3K/Akt-HIF1A axis. SHD may serve as a synergistic therapeutic choice for TMZ to suppress glioblastoma growth.

3.
Proc Natl Acad Sci U S A ; 121(33): e2403740121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102540

RESUMO

The formation of macrophage-derived foam cells has been recognized as the pathological hallmark of atherosclerotic diseases. However, the pathological evolution dynamics and underlying regulatory mechanisms remain largely unknown. Herein, we introduce a single-particle rotational microrheology method for pathological staging of macrophage foaming and antiatherosclerotic explorations by probing the dynamic changes of lysosomal viscous feature over the pathological evolution progression. The principle of this method involves continuous monitoring of out-of-plane rotation-caused scattering brightness fluctuations of the gold nanorod (AuNR) probe-based microrheometer and subsequent determination of rotational relaxation time to analyze the viscous feature in macrophage lysosomes. With this method, we demonstrated the lysosomal viscous feature as a robust pathological reporter and uncovered three distinct pathological stages underlying the evolution dynamics, which are highly correlated with a pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback loop. We also validated the potential of this positive feedback loop as a promising therapeutic target and revealed the time window-dependent efficacy of NLRP3 inflammasome-targeted drugs against atherosclerotic diseases. To our knowledge, the pathological staging of macrophage foaming and the pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback mechanism have not yet been reported. These findings provide insights into in-depth understanding of evolutionary features and regulatory mechanisms of macrophage foaming, which can benefit the analysis of effective therapeutical drugs as well as the time window of drug treatment against atherosclerotic diseases in preclinical studies.


Assuntos
Aterosclerose , Células Espumosas , Ouro , Proteína 3 que Contém Domínio de Pirina da Família NLR , Aterosclerose/patologia , Animais , Ouro/química , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Espumosas/patologia , Células Espumosas/metabolismo , Macrófagos/patologia , Macrófagos/metabolismo , Humanos , Lisossomos/metabolismo , Inflamassomos/metabolismo , Nanotubos/química , Reologia
4.
Anal Chem ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119849

RESUMO

Small-molecule fluorescent probes have emerged as potential tools for cancer cell imaging-based diagnostic and therapeutic applications, but their limited selectivity and poor imaging contrast hinder their broad applications. To address these problems, we present the design and construction of a novel near-infrared (NIR) biotin-conjugated and viscosity-activatable fluorescent probe, named as QL-VB, for selective recognition and imaging of cancer cells. The designed probe exhibited a NIR emission at 680 nm, with a substantial Stokes shift of 100 nm and remarkably sensitive responses toward viscosity changes in solution. Importantly, QL-VB provided an evidently enhanced signal-to-noise ratio (SNR: 6.2) for the discrimination of cancer cells/normal cells, as compared with the control probe without biotin conjugation (SNR: 1.8). Moreover, we validated the capability of QL-VB for dynamic monitoring of stimulated viscosity changes within cancer cells and employed QL-VB for distinguishing breast cancer tissues from normal tissues in live mice with improved accuracy (SNR: 2.5) in comparison with the control probe (SNR: 1.8). All these findings indicated that the cancer-targeting and viscosity-activatable NIR fluorescent probe not only enables the mechanistic investigations of mitochondrial viscosity alterations within cancer cells but also holds the potential as a robust tool for cancer cell imaging-based applications.

5.
ACS Cent Sci ; 10(6): 1201-1210, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38947212

RESUMO

Coacervates formed by liquid-liquid phase separation emerge as important biomimetic models for studying the dynamic behaviors of membraneless organelles and synchronously motivating the creation of smart architectures with the regulation of cell fate. Despite continuous progress, it remains challenging to balance the trade-offs among structural stability, versatility, and molecular communication for regulation of cell fate and systemic investigation in a complex physiological system. Herein, we present a self-stabilizing and fastener-bound gain-of-function methodology to create a new type of synthetic DNA membraneless organelle (MO) with high stability and controlled bioactivity on the basis of DNA coacervates. Specifically, long single-strand DNA generated by rolling circle amplification (RCA) is selected as the scaffold that assembles into membraneless coacervates via phase separation. Intriguingly, the as-formed DNA MO can recruit RCA byproducts and other components to achieve self-stabilization, nanoscale condensation, and function encoding. As a proof of concept, photoactivatable DNA MO is constructed and successfully employed for time-dependent accumulation and spatiotemporal management of cancer in a mouse model. This study offers new, important insights into synthetic membraneless organelles for the basic understanding and manipulation of important life processes.

6.
ACS Omega ; 9(27): 29471-29477, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005790

RESUMO

During production, agricultural products are often susceptible to potential harm caused by residual traces of pesticides. Oxine-copper is a broad spectrum and efficient protective fungicide widely used in the production of fruits and vegetables. The present study was carried out to profile the dissipation behaviors and residues of oxine-copper on cucumber and watermelon using QuEChERS pretreatment and UPLC-MS/MS. Its storage stability and dietary risk assessment were also estimated. The method validation displayed good linearity (R 2 ≥ 0.9980), sensitivity (limits of quantification ≤0.01 mg/kg), and recoveries (75.5-95.8%) with relative standard deviations of 2.27-8.26%. According to first-order kinetics, the half-lives of oxine-copper in cucumber and watermelon were 1.77-2.11 and 3.57-4.68 d, respectively. The terminal residues of oxine-copper in cucumber and watermelon samples were within <0.01-0.264 and <0.01-0.0641 mg/kg, respectively. Based on dietary risk assessment, the estimated long-term dietary risk probability value of oxine-copper in cucumber and watermelon is 64.11%, indicating that long-term consumption of cucumber and watermelon contaminated with oxine-copper would not pose dietary risks to the general population. The results provide scientific guidance for the rational utilization of oxine-copper in field ecosystems of cucumber and watermelon.

7.
IDCases ; 37: e01999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005844

RESUMO

A 49-year-old female with multiple myeloma complicated by renal failure had dysuria. The urine culture revealed multidrug-resistant aeromonas caviae during her hospital stay. Her symptoms and signs significantly improved after receiving a seven-day course of piperacillin-tazobactam treatment. She had no history of urinary tract infections(UTIs). On follow-up, she felt clinically well. Aeromonas caviae is a rare cause of UTI. We review previous cases of aeromonas caviae UTIs. The purpose of this case report is to assist in the diagnosis and management of aeromonas caviae cystitis.

8.
Angew Chem Int Ed Engl ; : e202410666, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007416

RESUMO

Near-infrared region (NIR; 650-1700 nm) dyes offer many advantages over traditional dyes with absorption and emission in the visible region. However, developing new NIR dyes, especially organic dyes with long wavelengths, small molecular weight, and excellent stability and biocompatibility, is still quite challenging. Herein, we present a general method to enhance the absorption and emission wavelengths of traditional fluorophores by simply appending a charge separation structure, dihydropyridopyrazine. These novel NIR dyes not only exhibited greatly redshifted wavelengths compared to their parent dyes, but also displayed a small molecular weight increase together with retained stability and biocompatibility. Specifically, dye NIR-OX, a dihydropyridopyra-zine derivative of oxazine with a molecular mass of 386.2 Da, exhibited an absorption at 822 nm and an emission extending to 1200 nm, making it one of the smallest molecular-weight NIR-II emitting dyes. Thanks to its rapid metabolism and long wave-length, NIR-OX enabled high-contrast bioimaging and assessment of cholestatic liver injury in vivo and also facilitated the evalua-tion of the efficacy of liver protection medicines against cholestatic liver injury.

9.
Nat Commun ; 15(1): 6349, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068156

RESUMO

Companion diagnostics using biomarkers have gained prominence in guiding radiotherapy. However, biopsy-based techniques fail to account for real-time variations in target response and tumor heterogeneity. Herein, we design an activated afterglow/MRI probe as a companion diagnostics tool for dynamically assessing biomarker apurinic/apyrimidinic endonuclease 1(APE1) during radiotherapy in vivo. We employ ultrabright afterglow nanoparticles and ultrasmall FeMnOx nanoparticles as dual contrast agents, significantly broadening signal change range and enhancing the sensitivity of APE1 imaging (limit of detection: 0.0092 U/mL in afterglow imaging and 0.16 U/mL in MRI). We devise longitudinally and transversely subtraction-enhanced imaging (L&T-SEI) strategy to markedly enhance MRI contrast and signal-to-noise ratio between tumor and normal tissue of living female mice. The combined afterglow and MRI facilitate both anatomical and functional imaging of APE1 activity. This probe enables correlation of afterglow and MRI signals with APE1 expression, radiation dosage, intratumor ROS, and DNA damage, enabling early prediction of radiotherapy outcomes (as early as 3 h), significantly preceding tumor size reduction (6 days). By monitoring APE1 levels, this probe allows for early and sensitive detection of liver organ injury, outperforming histopathological analysis. Furthermore, MRI evaluates APE1 expression in radiation-induced abscopal effects provides insights into underlying mechanisms, and supports the development of treatment protocols.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Imageamento por Ressonância Magnética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Animais , Imageamento por Ressonância Magnética/métodos , Feminino , Camundongos , Humanos , Linhagem Celular Tumoral , Meios de Contraste , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem , Camundongos Nus , Nanopartículas/química , Camundongos Endogâmicos BALB C , Radioterapia Guiada por Imagem/métodos
10.
Genes Genomics ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39078588

RESUMO

BACKGROUND: The combination of Sorafenib and transcatheter arterial chemoembolization (TACE) exhibits limited efficacy in the treatment of certain advanced hepatocellular carcinomas (HCC), and the molecular mechanisms underlying resistance to this combination remain unclear. OBJECTIVE: This study aims to underscore the distinctive contribution of GeoMx DSP technology in elucidating the molecular intricacies of HCC resistance to the Sorafenib and TACE combination. METHODS: Patients with advanced HCC during the waiting period before liver transplantation were classified into sensitive and resistant groups based on their response to Sorafenib and TACE combination therapy. Employing GeoMx DSP technology for comprehensive gene expression profiling, we identified pivotal molecular targets linked to resistance against combination therapy. RESULTS: The investigation scrutinized intra-tumoral and inter-individual variances, unveiling a spectrum of crucial molecular targets, such as PLG, PLVAP, immunoglobulin genes, ORM1, and NR4A1, among others. Additionally, we explored signaling pathways associated with treatment responsiveness, including the PPAR signaling pathway. Notably, we emphasized the significance of the immune microenvironment characterized by heightened SPP1 expression in HCC resistance to combination therapy. In the resistant group, SPP1+ tumor-associated macrophage (TAM) infiltration was notably pronounced (p = 0.037), while T-cell depletion showed a mitigated presence (p = 0.013). CONCLUSION: The study reveals intra- and inter-individual heterogeneity in HCC that is differentially responsive to the combination of Sorafenib and TACE, highlighting multiple key molecular targets associated with treatment resistance. The immune microenvironment is important, and in particular, SPP1+ TAM infiltration may play a key role. Meanwhile, the introduction of immunotherapy in patients resistant to combination therapy may lead to positive results.

11.
Front Cell Infect Microbiol ; 14: 1359422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077434

RESUMO

Background: Aeromonas dhakensis is associated with soft tissue infection, bacteremia and gastroenteritis. Involvement of respiratory system in adults is extremely rare. We report a case of fulminant pneumonia and bacteremia due to A. dhakensis in a patient without underlying diseases. Case presentation: A 26-year-old man became ill suddenly with pneumonia after swimming in a river. Despite intensive support measures in the intensive care unit, he died 13 hours after admission and 4 days after his first symptoms. Autopsy showed abundant Gram-negative bacteria, massive inflammatory cell infiltration, edema, necrosis and hemorrhage in lung tissue. A. dhakensis was isolated from blood culture taken at admission and bronchoalveolar lavage fluid (BALF) after intubation. Moreover, A. dhakensis was also detected in lung tissue by metagenomic next-generation sequencing (mNGS) assay. The infection may have come from river water. Conclusion: In patients who develop a fulminant pneumonia after contacting an aquatic environment, A. dhakensis should be alerted and mNGS may aid in the detection of aquatic pathogens by being more sensitive and specific versus traditional bacterial culture.


Assuntos
Aeromonas , Bacteriemia , Líquido da Lavagem Broncoalveolar , Infecções por Bactérias Gram-Negativas , Humanos , Masculino , Adulto , Aeromonas/isolamento & purificação , Aeromonas/genética , Aeromonas/patogenicidade , Bacteriemia/microbiologia , Bacteriemia/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Evolução Fatal , Líquido da Lavagem Broncoalveolar/microbiologia , Pulmão/patologia , Pulmão/microbiologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica
12.
Ecotoxicology ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026048

RESUMO

The use of some organophosphate insecticides is restricted or even banned in paddy fields due to their high toxicity to aquatic organisms. The aim of this study is to elucidate the main pathways and target organs of organophosphate insecticide toxicity to fish exposed via different routes by integrating histopathological and biochemical techniques. Using malathion as the model drug, when the dosage is 20-60 mg/L, the toxicity of whole body and head immersion drugs to zebrafish is much higher than that of trunk immersion drugs. A dose of 21.06-190.44 mg/kg of malathion feed was fed to adult zebrafish. Although the dosage was already high, no obvious toxicity was observed. Therefore, we believe that the drug mainly enters the fish body through the gills. When exposed to a drug solution of 20 mg/L and 60 mg/L, the fish showed significant neurological behavioral abnormalities, and the pathological damage to key organs and brain tissue was the most severe, showing obvious vacuolization and the highest residual amount (8.72-47.78 mg/L). The activity of acetylcholinesterase was the most inhibited (54.69-74.68%). Therefore, brain tissue is the key toxic target organ of malathion in fish. In addition, we compared the bioaccumulation effects of different water-soluble organophosphorus insecticides in fish and their toxic effects. We found that the higher the water solubility of organophosphorus insecticides, the lower their toxicity to fish.

13.
Commun Biol ; 7(1): 696, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844522

RESUMO

The potential for off-target mutations is a critical concern for the therapeutic application of CRISPR-Cas9 gene editing. Current detection methodologies, such as GUIDE-seq, exhibit limitations in oligonucleotide integration efficiency and sensitivity, which could hinder their utility in clinical settings. To address these issues, we introduce OliTag-seq, an in-cellulo assay specifically engineered to enhance the detection of off-target events. OliTag-seq employs a stable oligonucleotide for precise break tagging and an innovative triple-priming amplification strategy, significantly improving the scope and accuracy of off-target site identification. This method surpasses traditional assays by providing comprehensive coverage across various sgRNAs and genomic targets. Our research particularly highlights the superior sensitivity of induced pluripotent stem cells (iPSCs) in detecting off-target mutations, advocating for using patient-derived iPSCs for refined off-target analysis in therapeutic gene editing. Furthermore, we provide evidence that prolonged Cas9 expression and transient HDAC inhibitor treatments enhance the assay's ability to uncover off-target events. OliTag-seq merges the high sensitivity typical of in vitro assays with the practical application of cellular contexts. This approach significantly improves the safety and efficacy profiles of CRISPR-Cas9 interventions in research and clinical environments, positioning it as an essential tool for the precise assessment and refinement of genome editing applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Células-Tronco Pluripotentes Induzidas , Humanos , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , RNA Guia de Sistemas CRISPR-Cas/genética , Células HEK293
14.
ChemistryOpen ; : e202400013, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873881

RESUMO

Cigarette smoke contains a large number of chemicals, including both flavor components and harmful substances. The mainstream smoke (MSS) generated by smoking is directly inhaled by individuals, making it crucial to establish an effective method for smoke detection and analysis. One promising technique for analyzing smoke is MPT-MS (Microwave plasma torch mass spectrometry). This approach offers several advantages in accurately detecting the composition of cigarette smoke. By combining MPT-MS with a smoke pumping device, we can achieve real-time online detection of smoke components. We successfully detected 22 flavor compounds present in the smoke. These compounds contribute to the distinct taste of cigarettes. Moreover, we identified 2 polycyclic aromatic hydrocarbons (PAHs) in the smoke. PAHs are known carcinogens and are of great concern in terms of their potential health risks. The successful detection and identification of flavor compounds and PAHs using our method confirm the online detection capability of MPT-MS. This approach provides an efficient and reliable means for analyzing the complex composition of cigarette smoke. By utilizing MPT-MS, we can gain valuable insights into the chemical composition of cigarette smoke and can inform the development of strategies and policies aimed at reducing the harmful effects of smoking and protecting public health.

15.
Toxicol Mech Methods ; : 1-10, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38887111

RESUMO

Cooking oil fumes (COFs) are widely acknowledged as substantial contributors to indoor air pollution, having detrimental effects on human health. Despite the existence of commercialized in vitro aerosol exposure platforms, assessment risks of aerosol pollutants are primarily evaluated based on multiwell plate experiments by trapping and redissolving aerosols to conduct comprehensive in vitro immersion exposure manner. Therefore, an innovative real-time exposure system for COF aerosol was constructed, featuring a self-designed microfluidic chip as its focal component. The chip was used to assess toxicological effects of in vitro exposure to COF aerosol on cells cultured at the gas-liquid interface. Meanwhile, we used transcriptomics to analyze genes that exhibited differential expression in cells induced by COF aerosol. The findings indicated that the MAPK signaling pathway, known for its involvement in inflammatory response and oxidative stress, played a crucial role in the biological effects induced by COF aerosol. Biomarkers associated with inflammatory response and oxidative stress exhibited corresponding alterations. Furthermore, the concentration of COF aerosol exposure and post-exposure duration exert decisive effects on these biomarkers. Thus, the study suggests that COF can induce oxidative stress and inflammatory response in BEAS-2B cells, potentially exerting a discernible impact on human health.

16.
Front Neurorobot ; 18: 1305605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765870

RESUMO

Decoding surface electromyography (sEMG) to recognize human movement intentions enables us to achieve stable, natural and consistent control in the field of human computer interaction (HCI). In this paper, we present a novel deep learning (DL) model, named fusion inception and transformer network (FIT), which effectively models both local and global information on sequence data by fully leveraging the capabilities of Inception and Transformer networks. In the publicly available Ninapro dataset, we selected surface EMG signals from six typical hand grasping maneuvers in 10 subjects for predicting the values of the 10 most important joint angles in the hand. Our model's performance, assessed through Pearson's correlation coefficient (PCC), root mean square error (RMSE), and R-squared (R2) metrics, was compared with temporal convolutional network (TCN), long short-term memory network (LSTM), and bidirectional encoder representation from transformers model (BERT). Additionally, we also calculate the training time and the inference time of the models. The results show that FIT is the most performant, with excellent estimation accuracy and low computational cost. Our model contributes to the development of HCI technology and has significant practical value.

17.
Nat Food ; 5(5): 349-350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38773275
18.
Anal Chem ; 96(19): 7697-7705, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697043

RESUMO

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Nanopartículas , Polímeros , Semicondutores , Imageamento por Ressonância Magnética/métodos , Animais , Elementos da Série dos Lantanídeos/química , Polímeros/química , Nanopartículas/química , Camundongos , Humanos , Gadolínio/química , Luminescência , Oxigênio Singlete/química , Ítrio/química , Fluoretos/química , Camundongos Nus
19.
Angew Chem Int Ed Engl ; 63(32): e202406332, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781113

RESUMO

Clear delineation of tumor margins is essential for accurate resection and decreased recurrence rate in the clinic. Fluorescence imaging is emerging as a promising alternative to traditional visual inspection by surgeons for intraoperative imaging. However, traditional probes lack accuracy in tumor diagnosis, making it difficult to depict tumor boundaries accurately. Herein, we proposed an offensive and defensive integration (ODI) strategy based on the "attack systems (invasive peptidase) and defense systems (reductive microenvironment)" of multi-dimensional tumor characteristics to design activatable fluorescent probes for imaging tumor boundaries precisely. Screened out from a series of ODI strategy-based probes, ANQ performed better than traditional probes based on tumor unilateral correlation by distinguishing between tumor cells and normal cells and minimizing false-positive signals from living metabolic organs. To further improve the signal-to-background ratio in vivo, derivatized FANQ, was prepared and successfully applied to distinguish orthotopic hepatocellular carcinoma tissues from adjacent tissues in mice models and clinical samples. This work highlights an innovative strategy to develop activatable probes for rapid diagnosis of tumors and high-precision imaging of tumor boundaries, providing more efficient tools for future clinical applications in intraoperative assisted resection.


Assuntos
Antígenos CD13 , Corantes Fluorescentes , Imagem Óptica , Oxirredução , Corantes Fluorescentes/química , Humanos , Animais , Camundongos , Antígenos CD13/metabolismo , Antígenos CD13/análise , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral
20.
Anal Chem ; 96(23): 9551-9560, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38787915

RESUMO

The discovery and identification of broad-spectrum antiviral drugs are of great significance for blocking the spread of pathogenic viruses and corresponding variants of concern. Herein, we proposed a plasmonic imaging-based strategy for assessing the efficacy of potential broad-spectrum antiviral drugs targeting the N-terminal domain of a nucleocapsid protein (NTD) and nucleic acid (NA) interactions. With NTD and NA conjugated gold nanoparticles as core and satellite nanoprobes, respectively, we found that the multivalent binding interactions could drive the formation of core-satellite nanostructures with enhanced scattering brightness due to the plasmonic coupling effect. The core-satellite assembly can be suppressed in the presence of antiviral drugs targeting the NTD-NA interactions, allowing the drug efficacy analysis by detecting the dose-dependent changes in the scattering brightness by plasmonic imaging. By quantifying the changes in the scattering brightness of plasmonic nanoprobes, we uncovered that the constructed multivalent weak interactions displayed a 500-fold enhancement in affinity as compared with the monovalent NTD-NA interactions. We demonstrated the plasmonic imaging-based strategy for evaluating the efficacy of a potential broad-spectrum drug, PJ34, that can target the NTD-NA interactions, with the IC50 as 24.35 and 14.64 µM for SARS-CoV-2 and SARS-CoV, respectively. Moreover, we discovered that ceftazidime holds the potential as a candidate drug to inhibit the NTD-NA interactions with an IC50 of 22.08 µM from molecular docking and plasmonic imaging-based drug analysis. Finally, we validated that the potential antiviral drug, 5-benzyloxygramine, which can induce the abnormal dimerization of nucleocapsid proteins, is effective for SARS-CoV-2, but not effective against SARS-CoV. All these demonstrations indicated that the plasmonic imaging-based strategy is robust and can be used as a powerful strategy for the discovery and identification of broad-spectrum drugs targeting the evolutionarily conserved viral proteins.


Assuntos
Antivirais , Ouro , Nanopartículas Metálicas , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Ouro/química , Nanopartículas Metálicas/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/química , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Tratamento Farmacológico da COVID-19 , Domínios Proteicos , Fosfoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA