Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 12206-12214, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38637324

RESUMO

Chiral nanographenes (NGs) have garnered significant interest as optoelectronic materials in recent years. While helically chiral NGs have been extensively studied, axially chiral NGs have only witnessed limited examples, with no prior reports of axially chiral nonbenzenoid NGs. Herein we report an axially chiral nonbenzenoid nanographene featuring six pentagons and four heptagons. This compound, denoted as 2, was efficiently synthesized via an efficient Pd-catalyzed aryl silane homocoupling reaction. The presence of two bulky 3,5-di-tert-butylphenyl groups around the axis connecting the two nonbenzenoid PAH (AHR) segments endows 2 with atropisomeric chirality and high racemization energy barrier, effectively preventing racemization of both R- and S-enantiomers at room temperature. Optically pure R-2 and S-2 were obtained by chiral HPLC separation, and they exhibit circular dichroism (CD) activity at wavelengths up to 660 nm, one of the longest wavelengths with CD responses reported for the chiral NGs. Interestingly, racemic 2 forms a homoconfiguration π-dimer in the crystal lattice, belonging to the I222 chiral space group. Consequently, this unique structure renders crystals of 2 with a second harmonic generation (SHG) response, distinguishing it from all the reported axially chiral benzenoid NGs. Moreover, R-2 and S-2 also exhibit SHG-CD properties.

2.
Adv Mater ; 36(24): e2309256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479377

RESUMO

Polymer semiconductors hold tremendous potential for applications in flexible devices, which is however hindered by the fact that they are usually processed by halogenated solvents rather than environmentally more friendly solvents. An effective strategy to boost the solubility of high-performance polymer semiconductors in nonhalogenated solvents such as tetrahydrofuran (THF) by appending hydroxyl groups in the side chains is herein presented. The results show that hydroxyl groups, which can be easily incorporated into the side chains, can significantly improve the solubility of typical p- and n-types as well as ambipolar polymer semiconductors in THF. Meanwhile, the thin films of these polymer semiconductors from the respective THF solutions show high charge mobilities. With THF as the processing and developing solvents these polymer semiconductors with hydroxyl groups in the side chains can be well photopatterned in the presence of the photo-crosslinker, and the charge mobilities of the patterned thin films are mostly maintained by comparing with those of the respective pristine thin films. Notably, THF is successfully utilized as the processing and developing solvent to achieve high-density photopatterning with ≈82 000 device arrays cm-2 for polymer semiconductors in which hydroxyl groups are appended in the side chains.

3.
Adv Sci (Weinh) ; 11(8): e2305800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115748

RESUMO

In recent decades, polymer semiconductors, extensively employed as charge transport layers in devices like organic field-effect transistors (OFETs), have undergone thorough investigation due to their capacity for large-area solution processing, making them promising for mass production. Research efforts have been twofold: enhancing the charge mobilities of polymer semiconductors and augmenting their mechanical properties to meet the demands of flexible devices. Significant progress has been made in both realms, propelling the practical application of polymer semiconductors in flexible electronics. However, integrating excellent semiconducting and mechanical properties into a single polymer still remains a significant challenge. This review intends to introduce the design strategies and discuss the properties of high-charge mobility stretchable conjugated polymers. In addition, another key challenge faced in this cutting-edge field is maintaining stable semiconducting performance during long-term mechanical deformations. Therefore, this review also discusses the development of healable polymer semiconductors as a promising avenue to improve the lifetime of stretchable device. In conclusion, challenges and outline future research perspectives in this interdisciplinary field are highlighted.

4.
Angew Chem Int Ed Engl ; 62(39): e202304632, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37338996

RESUMO

Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received a lot of attention because of their unique optical, electronic, and magnetic properties, but their synthesis remains challenging. Herein, we report a non-benzenoid isomer of peri-tetracene, diazulenorubicene (DAR), with two sets of 5/7/5 membered rings synthesized by a (3+2) annulation reaction. Compared with the precursor containing only 5/7 membered rings, the newly formed five membered rings switch the aromaticity of the original heptagon/pentagon from antiaromatic/aromatic to non-aromatic/antiaromatic respectively, modify the intermolecular packing modes, and lower the LUMO levels. Notably, compound 2 b (DAR-TMS) shows p-type semiconducting properties with a hole mobility up to 1.27 cm2  V-1 s-1 . Moreover, further extension to larger non-benzenoid PAHs with 19 rings was achieved through on-surface chemistry from the DAR derivative with one alkynyl group.

5.
Angew Chem Int Ed Engl ; 62(17): e202300990, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861376

RESUMO

Non-benzenoid acenes containing heptagons have received increasing attention. We herein report a heptacene analogue containing a quinoidal benzodi[7]annulene core. Derivatives of this new non-benzenoid acene were obtained through an efficient synthetic strategy involving an Aldol condensation and a Diels-Alder reaction as key steps. The configuration of this heptacene analogue can be modulated from a wavy to a curved one by just varying the substituents from a (triisopropylsilyl)ethynyl group to a 2,4,6-triisopropylphenyl (Trip) group. When mesityl (Mes) groups are linked to the heptagons, the resulting non-benzenoid acene displays polymorphism with a tunable configuration from a curved to a wavy one upon varying the crystallization conditions. In addition, this new non-benzenoid acene can be oxidized or reduced by NOSbF6 or KC8 to the respective radical cation or radical anion. Compared with the neutral acene, the radical anion shows a wavy configuration and the central hexagon becomes aromatic.

6.
Adv Sci (Weinh) ; 10(15): e2300530, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36967566

RESUMO

Emissive organic semiconductors are highly demanding for organic light-emitting transistors (OLETs) and electrically pumped organic lasers (EPOLs). However, it remains a great challenge to obtain organic semiconductors with high carrier mobility and high photoluminescence quantum yield simultaneously. Here, a new design strategy is reported for highly emissive ambipolar and even n-type semiconductors by introducing perfluorophenyl groups into polycyclic aromatic hydrocarbons such as perylene and anthracene. The results reveal that 3,9-diperfluorophenyl perylene (5FDPP) exhibits the ambipolar semiconducting property with hole and electron mobilities up to 0.12 and 1.89 cm2 V-1 s-1 , and a photoluminescence quantum yield of 55%. One of the crystal forms of 5FDPA exhibits blue emission with an emission quantum yield of 52% and simultaneously shows the n-type semiconducting property with an electron mobility up to 2.65 cm2 V-1 s-1 , which is the highest value among the reported organic emissive n-type semiconductors. Furthermore, crystals of 5FDPP are utilized to fabricate OLETs by using Ag as source-drain electrodes. The electroluminescence is detected in the transporting channels with an external quantum efficiency (EQE) of up to 2.2%, and the current density is up to 145 kA cm-2 , which are among the highest values for single-component OLETs with symmetric electrodes.

7.
Adv Mater ; 35(17): e2209896, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36772843

RESUMO

Intrinsically stretchable polymer semiconductors are highly demanding for flexible electronics. However, it still remains challenging to achieve synergy between intrinsic stretchability and charge transport property properly for polymer semiconductors. In this paper, terpolymers are reported as intrinsically stretchable polymeric semiconductors with good ductility and high charge mobility simultaneously by incorporation of non-centrosymmetric spiro[cycloalkane-1,9'-fluorene] (spiro-fluorene) units into the backbone of diketopyrrolopyrrole (DPP) based conjugated polymers. The results reveal that these terpolymers show obviously high crack onset strains and their tensile moduli are remarkably reduced, by comparing with the parent DPP-based conjugated polymer without spiro-fluorene units. They exhibit simultaneously high charge mobilities (>1.0 cm2 V-1 s-1 ) at 100% strain and even after repeated stretching and releasing cycles for 500 times under 50% strain. The terpolymer P2, in which cyclopropane is linked to the spiro-fluorene unit, is among the best reported intrinsically stretchable polymer semiconductors with record mobility up to 3.1 cm2 V-1 s-1 at even 150% strain and 1.4 cm2 V-1 s-1 after repeated stretching and releasing cycles for 1000 times.

8.
Angew Chem Int Ed Engl ; 61(36): e202208378, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811386

RESUMO

We herein report a phosphoric-acid-substituted tetraphenylethene (T-P) capable of adapting its geometric configuration and biological activity to the microenvironment upon light irradiation for apoptosis modulation. Different from most ultraviolet-responsive isomerization, T-P undergoes cis-trans isomerization under visible light irradiation, which is biocompatible and thus photo-modulation is possible in living biosystems. By using alkaline phosphatase (ALP) and albumin as dual targets, T-P isomers display different protein binding selectivity, cancer-cell internalization efficiency and apoptosis-inducing ability. The proapoptotic activity was found to be kinetically controlled by the enzymatic reaction with ALP and regulated by co-existing albumin. Motivated by these findings, two-way modulation of proapoptotic effect and on-demand boosting anticancer efficacy were realized in vitro and in vivo using light and endogenous proteins as multiple non-invasive switching stimuli.


Assuntos
Neoplasias , Albuminas , Humanos , Isomerismo , Luz , Proteínas , Microambiente Tumoral
9.
Chem Commun (Camb) ; 58(33): 5100-5103, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35388834

RESUMO

A perylene five-membered ring diimide, PDI39, was developed as a new electron-deficient building block for n-type semiconductors. The π-expanded conjugated molecules containing azulenes were synthesized from PDI39. These conjugated molecules show helical geometry and near-infrared absorption up to 810 nm.

10.
Adv Sci (Weinh) ; 9(15): e2106087, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35318828

RESUMO

Molecular systems that can function as photoresists are essential for the fabrication of flexible electronics through all-photolithographic processes. Most of the reported molecular systems for photo-patterning of polymeric semiconductors contain binary or multi-components. In comparison, single component semiconducting photoresist is advantageous since it will circumvent the optimization of phase separation and ensure the patterned semiconducting thin films to be more uniform. In this paper, a single component semiconducting photoresist (PDPP4T-N3 ) by incorporating azide groups into the branching alkyl chains of a diketopyrrolopyrrole-based conjugated polymer is reported. The results reveal that i) the azide groups make the side chains to be photo-cross-linkable; ii) uniform patterns with size as small as 5 µm form under mild UV irradiation (365 nm, 85 mW cm-2 ) at ambient conditions; iii) such photo-induced cross-linking does not affect the inter-chain packing; iv) benefiting from the single component feature, field-effect transistors (FETs) with the individual patterned thin films display satisfactorily uniform performances with average charge mobility of 0.61 ± 0.10 cm2  V-1  s-1 and threshold voltage of 3.49 ± 1.43 V. These results offer a simple yet effective design strategy for high-performance single component semiconducting photoresists, which hold great potentials for flexible electronics processed by all-photolithography.

11.
Angew Chem Int Ed Engl ; 60(39): 21521-21528, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34346153

RESUMO

A diazirine-based four-armed cross-linker (4CNN) with a tetrahedron geometry is presented for efficient patterning of polymeric semiconductors by photo-induced carbene insertion. After blending of 4CNN with no more than 3 % (w/w), photo-patterning of p-, n-, and ambipolar semiconducting polymers with side alkyl chains was achieved; regular patterns with size as small as 5 µm were prepared with appropriate photomasks after 365 nm irradiation for just 40 s. The interchain packing order and the thin film morphology were nearly unaltered after the cross-linking and the semiconducting properties of the patterned thin films were mostly retained. A complementary-like inverter with a gain value of 112 was constructed easily by two steps of photo-patterning of the p-type and n-type semiconducting polymers. The results show that 4CNN is a new generation of cross-linker for the photo-patterning of polymeric semiconductors for all-solution-processible flexible electronic devices.

12.
Angew Chem Int Ed Engl ; 60(19): 10700-10708, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33634550

RESUMO

Diketopyrrolopyrrole (DPP) as a building block has been intensively investigated for organic semiconductors and light emitting materials. The synthesis of N-aryl DPPs remains challenging. Herein, we firstly report a new easily handled synthetic method toward N-aryl DPPs through H-DPP with diaryliodonium salt in the presence of CuI, which shows broad reaction scope. Sixteen N-aryl DPPs, including phenyl, furan and thiophene as flanking aromatic groups, were synthesized with yields up to 78 %. These N-aryl DPPs are fluorescent in both solutions and solid states, with quantum yields up to 96 % and 40 %, respectively. Moreover, we show that the reaction between H-DPP and diaryliodonium salt can lead to π-expanded DPPs by using Pd(OAc)2 as catalyst. Nine π-expanded DPPs were obtained in 27-61 % yields. These π-expanded DPPs exhibit good semiconducting properties with hole mobility of 0.71 cm2 V-1 s-1 , demonstrating that they are useful building blocks for high performance organic semiconductors.

13.
Adv Mater ; 33(8): e2005613, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448055

RESUMO

A new design strategy for photoresponsive semiconducting polymer with tri-stable semiconducting states is reported by simultaneous incorporation of tetra-ortho-methoxy-substituted azobenzene (mAzo) and arylazopyrazole (pAzo) in the side chains. The trans-to-cis transformations for mAzo and pAzo groups can sequentially occur within the polymer thin film after sequential 560 and 365 nm light irradiation. Remarkably, the trans-cis isomerization of mAzo and pAzo groups can modulate the thin film crystallinity. Accordingly, the performances of the resulting field-effect transistors (FETs) can be reversibly modulated, leading to tri-stable semiconducting states after sequential 560, 365, and 470 nm light irradiation. Therefore, the device performance can be logically controlled by light irradiation at three different wavelengths. In addition, with light irradiation and device current as the input and output signals, the three-value logic gate by using single FET device can be successfully mimicked.

14.
Org Lett ; 22(21): 8629-8633, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33044831

RESUMO

The diallene-containing compound dACl-1 was unexpectedly obtained by the unconventional transformation of two carbonyl groups in 4,4',5,5'-tetrachloro-10H,10'H-[9,9'-bianthracenylidene]-10,10'-dione into diallenes. In addition, the two 1-triisopropylsilyl (TIPS) groups in dACl-1 were easily removed to yield dACl-2. The reaction mechanism was investigated and is discussed. Moreover, both compounds are stable under ambient conditions, and, in particular, dACl-1 is thermally stable at 315 °C.

15.
Angew Chem Int Ed Engl ; 59(33): 13844-13851, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32385919

RESUMO

Optically tunable field-effect transistors (FETs) with near infra-red (NIR) light show promising applications in various areas. Now, arylazopyrazole groups are incorporated in the side chains of a semiconducting donor-acceptor (D-A) polymer. The cis-trans interconversion of the arylazopyrazole can be controlled by 980 nm and 808 nm NIR light irradiation, by utilizing NaYF4 :Yb,Tm upconversion nanoparticles and the photothermal effect of conjugated D-A polymers, respectively. This reversible transformation affects the interchain packing of the polymer thin film, which in turn reversibly tunes the semiconducting properties of the FETs by the successive 980 nm and 808 nm light irradiation. The resultant FETs display fast response to NIR light, good resistance to photofatigue, and stability in storage for up to 120 days. These unique features will be useful in future memory and bioelectronic wearable devices.

16.
Angew Chem Int Ed Engl ; 59(9): 3529-3533, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31863545

RESUMO

Polycyclic aromatic hydrocarbons with hexagons/pentagons or hexagons/heptagons have been intensively investigated in recent years, but those with simultaneous presence of hexagons, pentagons and heptagons remain rare. In this paper, we report dicyclohepta[ijkl,uvwx]rubicene (DHR), a non-benzenoid isomer of dibenzo[bc,kl]coronene with two pentagons and two heptagons. We developed an efficient and scalable synthetic method for DHR by using Scholl reaction and dehydrogenation. Crystal structure of DHR shows that the benzenoid rings, two pentagons and two heptagons are coplanar. The bond lengths analysis and the ICSS(1)zz and LOL-π calculations indicate that the incorporation of two formal azulene moieties has an effect on the conjugated structure. The π-electrons of benzenoid and pentagon rings are more delocalized. Cyclic voltammetry studies indicate that DHR shows multiple oxidation and reduction potentials. Interestingly, DHR exhibits unusual S0 to S2 absorption and abnormal anti-Kasha S2 to S0 emission. Moreover, crystals of DHR exhibit semiconducting behaviour with hole mobility up to 0.082 cm2 V-1 s-1 .

17.
Adv Mater ; 31(44): e1902576, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31532883

RESUMO

It is shown that the semiconducting performance of field-effect transistors (FETs) with PDPP4T (poly(diketopyrrolopyrrole-quaterthiophene)) can be reversibly tuned by UV light irradiation and thermal heating after blending with the photochromic hexaarylbiimidazole compound (p-NO2 -HABI). A photo-/thermal-responsive FET with a blend thin film of PDPP4T and p-NO2 -HABI is successfully fabricated. The transfer characteristics are altered significantly with current enhanced up to 106 -fold at VG = 0 V after UV light irradiation. However, further heating results in the recovery of the transfer curve. This approach can be extended to other semiconducting polymers such as P3HT (poly(3-hexyl thiophene)), PBTTT (poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene)) and PDPPDTT (poly(diketopyrrolopyrrole-dithienothiophene)). It is hypothesized that TPIRs (2,4,5-triphenylimidazolyl radicals) formed from p-NO2 -HABI after UV light irradiation can interact with charge defects at the gate dielectric-semiconductor interface and those in the semiconducting layer to induce more hole carriers in the semiconducting channel. The application of the blend thin film of PDPP4T and p-NO2 -HABI is further demonstrated to fabricate the photonically programmable and thermally erasable FET-based nonvolatile memory devices that are advantageous in terms of i) high ON/OFF current ratio, ii) nondestructive reading at low electrical bias, and iii) reasonably highly stable ON-state and OFF-state.

18.
Adv Mater ; 31(46): e1903104, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31483542

RESUMO

Recent decades have witnessed the rapid development of semiconducting polymers in terms of high charge mobilities and applications in transistors. Significant efforts have been made to develop various conjugated frameworks and linkers. However, studies are increasingly demonstrating that the side chains of semiconducting polymers can significantly affect interchain packing, thin film crystallinity, and thus semiconducting performance. Ways to modify the side alkyl chains to improve the interchain packing order and charge mobilities for conjugated polymers are first discussed. It is shown that modifying the branching chains by moving the branching points away from the backbones can boost the charge mobilities, which can also be improved through partially replacing branching chains with linear ones. Second, the effects of side chains with heteroatoms and functional groups are discussed. The siloxane-terminated side chains are utilized to enhance the semiconducting properties. The fluorinated alkyl chains are beneficial for improving both charge mobility and air stability. Incorporating H bonding group side chains can improve thin film crystallinities and boost charge mobilities. Notably, incorporating functional groups (e.g., glycol, tetrathiafulvalene, and thymine) into side chains can improve the selectivity of field-effect transistor (FET)-based sensors, while photochromic group containing side chains in conjugated polymers result in photoresponsive semiconductors and optically tunable FETs.

19.
ACS Appl Mater Interfaces ; 11(17): 15837-15844, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964258

RESUMO

n-Type organic/polymeric semiconductors with high electron mobilities are highly demanded for future flexible organic circuits. Except for developing a new conjugated backbone, recent studies show that side-chain engineering also plays an indispensable role in boosting the charge-transporting property. In this paper, we report a new polymer PNDI2T-DTD with a representative n-type naphthalene diimide (NDI)-bithiophene backbone for high-performance n-type flexible thin-film transistors through branching/linear side-chain engineering strategy. Serving as the flexible side chains, the linear/branching side-chain pattern is found to be effective in tuning the preaggregation behavior in solution and the packing ordering of polymeric chains, resulting in the improvement of thin-film crystallinity. The electron mobility of the thin film of PNDI2T-DTD on flexible substrates can reach 1.52 cm2 V-1 s-1, which is approximately five times higher than that of PNDI2T-DT with the same conjugated backbone and only branching alkyl chains.

20.
Adv Sci (Weinh) ; 5(11): 1801497, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479941

RESUMO

Development of facile and economic approaches for assembling organic semiconductors into more ordered structures toward high charge mobilities is highly demanding for the fabrication of organic circuits. Here a simple and facile approach is reported to prepare conjugated polymer thin films with improved crystallinities and charge mobilities by self-assembling semiconducting polymers on water. The formation of polymer thin films with more ordered structures is attributed to coffee ring effect induced by solvent-evaporation on water, and the hydrophobic nature of conjugated polymers that forces the polymer chains to pack densely and orderly on water surface. This approach is applicable to typical semiconducting polymers, and charge mobilities of their thin films are boosted remarkably. Finally, this new method can be utilized to easily fabricate the array of field-effect transistors with high charge mobilities in an economic way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...