Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Breast Cancer Res ; 26(1): 48, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504374

RESUMO

BACKGROUND: Breast cancer stem cell (CSC) expansion results in tumor progression and chemoresistance; however, the modulation of CSC pluripotency remains unexplored. Transmembrane protein 120B (TMEM120B) is a newly discovered protein expressed in human tissues, especially in malignant tissues; however, its role in CSC expansion has not been studied. This study aimed to determine the role of TMEM120B in transcriptional coactivator with PDZ-binding motif (TAZ)-mediated CSC expansion and chemotherapy resistance. METHODS: Both bioinformatics analysis and immunohistochemistry assays were performed to examine expression patterns of TMEM120B in lung, breast, gastric, colon, and ovarian cancers. Clinicopathological factors and overall survival were also evaluated. Next, colony formation assay, MTT assay, EdU assay, transwell assay, wound healing assay, flow cytometric analysis, sphere formation assay, western blotting analysis, mouse xenograft model analysis, RNA-sequencing assay, immunofluorescence assay, and reverse transcriptase-polymerase chain reaction were performed to investigate the effect of TMEM120B interaction on proliferation, invasion, stemness, chemotherapy sensitivity, and integrin/FAK/TAZ/mTOR activation. Further, liquid chromatography-tandem mass spectrometry analysis, GST pull-down assay, and immunoprecipitation assays were performed to evaluate the interactions between TMEM120B, myosin heavy chain 9 (MYH9), and CUL9. RESULTS: TMEM120B expression was elevated in lung, breast, gastric, colon, and ovarian cancers. TMEM120B expression positively correlated with advanced TNM stage, lymph node metastasis, and poor prognosis. Overexpression of TMEM120B promoted breast cancer cell proliferation, invasion, and stemness by activating TAZ-mTOR signaling. TMEM120B directly bound to the coil-coil domain of MYH9, which accelerated the assembly of focal adhesions (FAs) and facilitated the translocation of TAZ. Furthermore, TMEM120B stabilized MYH9 by preventing its degradation by CUL9 in a ubiquitin-dependent manner. Overexpression of TMEM120B enhanced resistance to docetaxel and doxorubicin. Conversely, overexpression of TMEM120B-∆CCD delayed the formation of FAs, suppressed TAZ-mTOR signaling, and abrogated chemotherapy resistance. TMEM120B expression was elevated in breast cancer patients with poor treatment outcomes (Miller/Payne grades 1-2) than in those with better outcomes (Miller/Payne grades 3-5). CONCLUSIONS: Our study reveals that TMEM120B bound to and stabilized MYH9 by preventing its degradation. This interaction activated the ß1-integrin/FAK-TAZ-mTOR signaling axis, maintaining stemness and accelerating chemotherapy resistance.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Integrina beta1 , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Cadeias Pesadas de Miosina
2.
Mol Carcinog ; 63(4): 757-771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289172

RESUMO

Long noncoding RNAs (LncRNAs) have been gaining attention as potential therapeutic targets for lung cancer. In this study, we investigated the expression and biological behavior of lncRNA DARS-AS1, its predicted interacting partner miR-302a-3p, and ACAT1 in nonsmall cell lung cancer (NSCLC). The transcript level of DARS-AS1, miR-302a-3p, and ACAT1 was analyzed using qRT-PCR. Endogenous expression of ACAT1 and the expression of-and changes in-AKT/ERK pathway-related proteins were determined using western blotting. MTS, Transwell, and apoptosis experiments were used to investigate the behavior of cells. The subcellular localization of DARS-AS1 was verified using FISH, and its binding site was verified using dual-luciferase reporter experiments. The binding of DARS-AS1 to miR-302a-3p was verified using RNA co-immunoprecipitation. In vivo experiments were performed using a xenograft model to determine the effect of DARS-AS1 knockout on ACAT1 and NSCLC. lncRNA DARS-AS1 was upregulated in NSCLC cell lines and tissues and the expression of lncRNA DARS-AS1 was negatively correlated with survival of patients with NSCLC. Knockdown of DARS-AS1 inhibited the malignant behaviors of NSCLC via upregulating miR-302a-3p. miR-302a-3p induced suppression of malignancy through regulating oncogene ACAT1. This study demonstrates that the DARS-AS1-miR-302a-3p-ACAT1 pathway plays a key role in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo
3.
Cancer Sci ; 114(11): 4237-4251, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37700392

RESUMO

Zinc finger protein 500 (ZNF500) has an unknown expression pattern and biological function in human tissues. Our study revealed that the ZNF500 mRNA and protein levels were higher in breast cancer tissues than those in their normal counterparts. However, ZNF500 expression was negatively correlated with advanced TNM stage (p = 0.018), positive lymph node metastasis (p = 0.014), and a poor prognosis (p < 0.001). ZNF500 overexpression abolished in vivo and in vitro breast cancer cell proliferation by activating the p53-p21-E2F4 signaling axis and directly interacting with p53 via its C2H2 domain. This may prevent ubiquitination of p53 in a manner that is competitive to MDM2, thus stabilizing p53. When ZNF500-∆C2H2 was overexpressed, the suppressed proliferation of breast cancer cells was neutralized in vitro and in vivo. In human breast cancer tissues, ZNF500 expression was positively correlated with p53 (p = 0.022) and E2F4 (p = 0.004) expression. ZNF500 expression was significantly lower in patients with Miller/Payne Grade 1-2 than in those with Miller/Payne Grade 3-5 (p = 0.012). ZNF500 suppresses breast cancer cell proliferation and sensitizes cells to chemotherapy.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-mdm2 , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
J Mol Histol ; 54(2): 135-145, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36988773

RESUMO

Chromosome 1 open reading frame 109 (C1orf09) is a protein whose expression pattern and biological function in humans, particularly in malignant tumors, have not been explored. In this study, both bioinformatics and immunohistochemical staining revealed that C1orf109 was overexpressed in the cytoplasm of liver cancer cells, and the positive ratio of C1orf109 in liver cancer samples (42.5%, 37/87) was significantly higher than that in normal liver tissues (10%, 3/30, P = 0.0012). C1orf109 expression was correlated with an advanced TNM stage (P = 0.017) and vascular invasion (P = 0.023) and predicted the poor overall survival of patients with liver cancer (P = 0.001). C1orf109 facilitated tumor growth, colony formation, migration, and invasion by activating Wnt signaling by upregulating non-phosphorylated ß-catenin and its downstream target genes such as CyclinD1, c-myc, and MMP7. Our results also suggest that C1orf109 interacts and co-localizes with casein kinase II (CK2) to activate Wnt signaling. Treatment with a CK2-specific inhibitor markedly counteracted the increased expression of CyclinD1, c-Myc, and MMP7, as well as the upregulation of tumor proliferation and invasion caused by C1orf109 overexpression. Taken together, our results indicate that C1orf109 accelerates liver cancer cell proliferation and invasion by strengthening the Wnt signaling pathway in a CK2-dependent manner.


Assuntos
Neoplasias Hepáticas , Via de Sinalização Wnt , Humanos , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Metaloproteinase 7 da Matriz/genética , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular , Neoplasias Hepáticas/genética , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Fosfoproteínas/metabolismo
5.
Int J Legal Med ; 137(2): 511-518, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36418581

RESUMO

Forensic DNA analysis of semen-vaginal fluid mixed stains is essential and necessary in sexual assault cases. Here, we used a magnetic bead conjugated acrosin binding protein (ACRBP) antibody to separate and enrich sperm cells from mixed stains. Previously, western blotting indicated that ACRBP was specifically expressed in sperm cells, but not in female blood and epithelial cells, while immunofluorescence data showed ACRBP was localized to the acrosome in sperm cells. In our study, sperm were separated from mixed samples at three sperm cell/female buccal epithelial cell ratios (103:103; 103:104; and 103:105) using a magnetic bead conjugated ACRBP antibody. Subsequently, 23 autosomal short tandem repeat (STR) loci were amplified using the Huaxia™ Platinum PCR Amplification System and genotyped using capillary electrophoresis. The genotyping success rate for STR loci was 90% when the sperm to female buccal epithelial cell ratio was > 1:100 in mixed samples. Our results suggest that the magnetic bead conjugated ACRBP antibody is effective for isolating sperm cells in sexual assault cases.


Assuntos
Corantes , Sêmen , Masculino , Humanos , Feminino , Corantes/metabolismo , Espermatozoides , Coloração e Rotulagem , Fenômenos Magnéticos , Impressões Digitais de DNA/métodos
6.
Cancer Sci ; 114(3): 764-780, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36308067

RESUMO

BAI1-associated protein 2-like 1 (BAIAP2L1), also known as insulin receptor tyrosine kinase substrate, modulates the insulin network; however, its function in breast cancer has not been explored. Immunohistochemical analysis of 140 breast cancer specimens (77 triple-negative and 63 nontriple-negative cases) indicated that BAIAP2L1 expression was higher in breast cancer tissues (56/140, 40%) than in normal breast tissues (28.3%, 15/53; p < 0.001). BAIAP2L1 expression in breast cancer was correlated with triple-negative breast cancer (p = 0.0013), advanced TNM stage (p = 0.001), lymph node metastasis (p = 0.001), and poor patient prognosis (p = 0.001). BAIAP2L1 overexpression could accelerate breast cancer proliferation, invasion, and stemness in vivo and in vitro, possibly through the activation of AKT, Snail, and cyclin D1. Treatment with the AKT inhibitor LY294002 reduced the effects of BAIAP2L1 overexpression on breast cancer cells. BAIAP2L1 may bind to the AA202-288 of ribosomal protein L3 (RPL3) within its SRC homology 3 (SH3) domain, the loss of which may abolish the transduction of the AKT signaling pathway by promoting the degradation of PIK3CA. Moreover, BAIAP2L1 overexpression may induce chemotherapy resistance, with BAIAP2L1 expression being higher in patients with advanced Miller grades than those with lower grades. Our results indicated that BAIAP2L1 promotes breast cancer progression through the AKT signaling pathway by interacting with RPL3 through its SH3 domain.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Ribossômica L3 , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores Acoplados a Proteínas G , Proliferação de Células/fisiologia , Linhagem Celular Tumoral
7.
Cell Death Dis ; 13(9): 783, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088346

RESUMO

Based on the RNA-sequencing data, previous studies revealed that extracellular matrix receptor interaction and focal adhesion signaling pathways were enriched in radioresistant non-small cell lung cancer (NSCLC) cell lines. As the principal members of these signaling pathways, recent studies showed that FAK controlled YAP's nuclear translocation and activation in response to mechanical activation. However, the underlying mechanisms are largely unknown. This study was designed to determine whether P130cas plays a role in FAK-YAP axis-mediated radioresistance. We found that P130cas promoted proliferation, altered the cell cycle profile, and enhanced tumor growth using cell lines and xenograft mouse models. After treating the cell lines and xenograft models with a single dose of 5 Gy irradiation, we observed that P130cas effectively induced radioresistance in vitro and in vivo. We confirmed that P130cas interacted with and promoted YAP stabilization, thereby facilitating YAP's activation and nuclear translocation and downregulating the radiosensitivity of NSCLC. Our data also revealed that P130cas and FAK directly interacted with each other and worked together to regulate YAP's activation and nuclear translocation. Furthermore, the present study identified that P130cas, FAK and YAP formed a triple complex to induce radioresistance. Using P130cas-ΔSH3, FAK- P712/715A mutant, YAP-ΔSH3bm and YAP-ΔWW mutant, our results showed that targeting P130cas-FAK interaction may be a more cost-effective way to overcome the YAP activation mediated radioresistance in NSCLC. Using the data of the public database and our clinical samples, the present study suggested that the expression of P130cas correlated with YAP expression and indicated a poor overall response rate of NSCLC patients who underwent radiation therapy. Overall, our study extends the knowledge of FAK-YAP interaction and provides new insight into understanding the underlying mechanisms to overcome the radioresistance of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Moléculas de Adesão Celular/metabolismo , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Camundongos , Transdução de Sinais
8.
Dalton Trans ; 51(39): 15022-15030, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112028

RESUMO

A porphyrin-based conjugated organic polymer (COP) was constructed from 5,10,15,20-tetrakis(4-bromophenyl)porphyrin copper (CuTBPP) and 5,5'-bis-ethynyl-2,2'-bipyridine (BPY) via Sonogashira coupling. Its complex Co/CuTBPP-BPY-COP (with dual metal sites composed of copper porphyrin and a cobalt BPY unit) was prepared by coordination with Co2+. All of the prepared CuTBPP-BPY-COP and Co/CuTBPP-BPY-COP compounds exhibited excellent photocatalytic performance toward CO2 reduction under visible-light irradiation without another sacrificial reagent but only H2O. Co/CuTBPP-BPY-COP (dual metal sites) exhibited better photocatalytic activity than CuTBPP-BPY-COP (a single metal site). Co/CuTBPP-BPY-COP retained a higher photocatalysis capacity for CO2 reduction after 10 consecutive cycles. The total quantity of CO product was 263.2 µmol g-1 after 10 h of irradiation. Theoretical studies indicate that introducing Co metal centers and nitro groups are more favorable for the photoreduction catalysis of CO2 compared with that using CuTBPP-BPY-COP.

9.
Mol Carcinog ; 61(11): 1016-1030, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36000254

RESUMO

Rho guanine nucleotide exchange factor 40 (ARHGEF40) is a member of the Dbl-family of guanine nucleotide factor proteins. However, its expression pattern and biological function in malignant tumors, notably in nonsmall cell lung cancer (NSCLC) are currently unknown. The present study demonstrated that ARHGEF40 was highly expressed in NSCLC specimens and that its expression was significantly associated with advanced TNM stage (p < 0.001), lymph node metastasis (p = 0.002), and poor prognosis (p = 0.0056). In addition, ARHGEF40 accelerated nuclear translocation of the key component ß-catenin and increased the expression levels of the Wnt signaling pathway targets c-myc, cyclin D1 and MMP7. Moreover, it promoted lung cancer cell proliferation and invasion in vitro and in vivo. To elucidate the underlying molecular mechanism, the current study demonstrated that ARHGEF40 could induce activation of the Wnt signaling pathway by increasing the phosphorylation levels of AKT and GSK3ß via interaction with RhoA. Moreover, the Dbl homology (DH)-pleckstrin homology (PH) domain of ARHGEF40 was responsible for this interaction. Its deletion abolished the binding, which blocked the activation of the Wnt signaling. Taken together, the data indicated that ARHGEF40 promoted the malignant phenotype of lung cancer cells by activating the AKT-Wnt axis. This was achieved by its interaction with RhoA via the DH-PH domain. ARHGEF40 may serve as a novel target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Nucleotídeos de Guanina , Humanos , Neoplasias Pulmonares/patologia , Metaloproteinase 7 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Cell Death Dis ; 12(4): 384, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837178

RESUMO

WW domain binding protein-2 (WBP2) can function as a Yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) co-activator and has a crucial role in promoting breast cancer progression. However, the expression and potential molecular mechanisms of WBP2 in the context of lung cancer are not fully understood. We determined that WBP2 was highly expressed in lung cancer specimens and cell lines and that this expression was closely related to the advanced pTNM stage, lymph node metastasis, and poor prognosis of patients. In addition, gain- and loss-of-function experiments revealed that WBP2 could significantly promote the proliferation and invasion of lung cancer cells both in vivo and in vitro. To elucidate the underlying molecular mechanism, we determined that wild-type WBP2 could competitively bind to the WW domain of WWC3 (WW and C2 domain-containing-3) with LATS1 (Large tumor suppressor-1) through its PPxY motifs, thus inhibiting the formation of the WWC3-LATS1 complex, reducing the phosphorylation level of LATS1, suppressing the activity of the Hippo pathway, and ultimately promoting YAP nuclear translocation. Therefore, from the aspect of upstream molecules of Hippo signaling, WBP2 promotes the malignant phenotype of lung cancer cells in a unique manner that is not directly dependent upon YAP, thus providing a corresponding experimental basis for the development of targeted therapeutic drugs for lung cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Feminino , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus
11.
Int Immunopharmacol ; 88: 106916, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32882665

RESUMO

Triple-negative breast cancer has been classified as basal-like immune activated (BLIA), basal-like immune-suppressed (BLIS), and two other subtypes, suggesting potential immune therapeutic targets for basal-like breast cancer (BLBC). 2'-5'-Oligoadenylate synthetases (OASs), identified from differentially expressed genes (DEGs) between BLIA and BLIS breast cancers (GSE76124), are involved in antiviral activity induced by interferons. However, the association between the four OASs and prognosis or tumor-infiltrating immune cells (TIICs) remains unclear. Expression, survival data, and immune correlations for OASs in BLBC were assessed using bioinformatics tools. We found that OASs were highly expressed in BLIA breast cancer. Survival analysis suggested that high transcriptional levels of OASs were associated with better overall survival, relapse-free survival, and distant metastasis-free survival in patients with BLBC. Moreover, the prognostic value of OASs with respect to different clinicopathological factors, and especially according to lymph node metastasis, in patients with BLBC was further assessed. Our findings elucidated the expression, prognostic role, and effect of OASs in TIICs on BLBC, which might promote the development of OAS-targeted immunotherapy for BLBC.


Assuntos
2',5'-Oligoadenilato Sintetase/imunologia , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/imunologia , Interferons/imunologia , Linfócitos do Interstício Tumoral/imunologia , 2',5'-Oligoadenilato Sintetase/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Feminino , Humanos , Estimativa de Kaplan-Meier , Prognóstico
12.
Onco Targets Ther ; 13: 4373-4384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547070

RESUMO

PURPOSE: FAM110B is a member of the FAM110 family (family with sequence similarity 110), which is a component of the centrosome associated proteins. Previous studies have shown that FAM110B may be involved in the process of cell cycle and may play a role in carcinogenesis and tumor progression. Using an online database, we found that FAM110B may predict favorable prognosis in non-small cell lung cancer (NSCLC). Therefore, the role of FAM110B playing in NSCLC needs to be further investigated. PATIENTS AND METHODS: Online databases and immunohistochemistry were used to predict the expression and prognostic value of FAM110B in NSCLC samples. Immunofluorescence staining was used to investigate the subcellular distribution of FAM110B. Western blot, MTT, colony formation, and matrigel invasion assay were used to detect the expression and the effect of FAM110B on mediating proliferation and invasion in NSCLC cell lines. RESULTS: In this study, immunohistochemistry results showed that FAM110B expression significantly correlated with early TNM staging (P=0.020) and negative regional lymph node metastasis (P=0.006). Kaplan-Meier survival analysis found that the median survival time of patients with positive FAM110B expression (56.181±2.348 months) was significantly longer than those with negative FAM110B expression (47.701±2.997 months, P=0.024). Moreover, overexpression of FAM110B inhibited the proliferation and invasion of A549, H1299, and LK2 cell lines. Conversely, FAM110B RNAi exerted opposite effects in the above cell lines. Furthermore, FAM110B overexpression downregulated the active ß-catenin, phosphorylation of GSK-3ß (p-GSK-3ß), cyclin B1, cyclin D1, MMP2, and MMP7, and upregulated the phosphorylation of ß-catenin (p-ß-catenin) in A549 and H1299 cells. Besides, the FAM110B-induced depressions of p-GSK-3ß and active ß-catenin were reversed after being treated with Wnt/ß-catenin inhibitor, XAV-939. CONCLUSION: In summary, our results demonstrated that the overexpression of FAM110B restricts the proliferation and invasion of NSCLC cells by inhibiting Wnt/ß-catenin signaling. Our study reveals the antitumor function of FAM110B in NSCLC and indicates that FAM110B is a potential therapeutic target.

13.
J Exp Clin Cancer Res ; 39(1): 14, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31941535

RESUMO

In the original publication of this manuscript [1], the author mislabeled the CTL group and ZNF326 group in Fig. 2-I,J (MTT result). The revised Fig. 2 is shown below.

14.
Onco Targets Ther ; 12: 6393-6406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496741

RESUMO

PURPOSE: FAM163A, also called neuroblastoma-derived secretory protein (NDSP) or C1ORF76, was newly found on chromosome 1q25.2. Previous studies of FAM163A focused on its expression and function in neuroblastoma. However, using an online database, we found that FAM163A may predict poor prognosis in lung squamous cell carcinomas (LUSC). Therefore, the role of FAM163A plays in LUSC needs to be further clarified. PATIENTS AND METHODS: Western blots, immunofluorescence and immunohistochemistry were used to detect the effect of FAM163A on mediating cell proliferation in vitro and in vivo. Co-immunoprecipitation and immunofluorescence were utilized to evaluate the interaction and co-localization of FAM163A with 14-3-3ß and ERK. RESULTS: In this study, our data revealed that FAM163A overexpression increased the levels of ERK and p90RSK phosphorylation and promoted the expression of cyclin D1. Incorporation with U0126 reversed the effects of FAM163A overexpression. FAM163A directly interacted with both 14-3-3ß and ERK and regulated the phosphorylation of ERK by upregulating the protein level of 14-3-3ß. Immunohistochemistry results also showed that FAM163A expression significantly correlated with larger tumor size (P=0.023), TNM staging (P=0.015) and regional lymph node metastasis (P=0.016). Kaplan-Meier survival analysis implied the mean survival time of patients with positive FAM163A expression (49.72±3.97 months) was much shorter than the patients with negative FAM163A expression (63.36±3.14 months, P=0.011). CONCLUSION: In summary, the present study identified a novel mechanism that FAM163A, through binding and upregulating 14-3-3ß, facilitated ERK phosphorylation that led to an increase of cellular proliferation of LUSC cells. FAM163A may be a useful marker to predict poor prognosis of patients with LUSC.

15.
J Thorac Oncol ; 14(10): 1766-1783, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228625

RESUMO

INTRODUCTION: The molecular mechanism underlying the induction of resistance to tyrosine kinase inhibitors (TKIs) via the membranous/cytoplasmic/nuclear translocation of EGFR has not yet been reported. METHODS: We performed immunohistochemistry to detect the distribution of EGFR in lung adenocarcinoma specimens after TKI treatment and analyzed the relationship between different EGFR locations and patient survival duration. Mass spectrometry analysis and immunoprecipitation were performed to show the interaction of cytosolic EGFR with YY1 associated protein 1 (YAP) and salt inducible kinase 2 (SIK2). Dual-luciferase assays, immunoblotting, real-time polymerase chain reaction, and functional experiments were used to elucidate the role of EGFR cytoplasmic/nuclear translocation in Hippo pathway dysregulation. RESULTS: Patients with advanced lung adenocarcinoma with membranous mutant EGFR (19del or 21 L858R) showed significantly longer progression-free survival than those with cytoplasmic mutant EGFR after gefitinib treatment. The concentration that inhibits 50% in PC-9 with cytoplasmic EGFR was higher than that in hunman non-small cell lung cancer 827 with membranous EGFR. During first-generation TKI resistance induction, membrane EGFR translocated to the cytoplasm/nucleus, accompanied by the Hippo pathway inhibition. Cytoplasmic EGFR and SIK2 interaction inhibited large tumor suppressor kinase 1 (LATS1) and macrophage stimulating 1 (MST1) interaction, promoting YAP nuclear translocation. However, cells with osimertinib-induced resistance also showed EGFR translocation and lower phospho-EGF receptor but did not show Hippo pathway inhibition. Moreover, osimertinib and erlotinib could restore sensitivity to each other in resistant cells. CONCLUSIONS: Plasma/nuclear translocation of EGFR and inhibition of the Hippo pathway are some of the important mechanisms underlying the resistance induced by first-generation TKIs. Membrane/plasma translocation of EGFR induced by osimertinib may be another resistance phenomenon besides MNNG HOS transforming gene (c-MET) amplification, C797S mutation, and ERK pathway inhibition.


Assuntos
Adenocarcinoma de Pulmão/patologia , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Prognóstico , Transporte Proteico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
FEBS Lett ; 593(14): 1827-1836, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31140586

RESUMO

Fbxo6 (also called FBG2) is a critical component of the evolutionarily conserved ubiquitin-protein ligase complex SCF (Skp1/Cdc53-Cullin1/F-box). Previous studies have demonstrated that Fbxo6 facilitates the growth and proliferation but inhibits the apoptosis and invasion of gastric cancer cells. However, the role of Fbxo6 in non-small cell lung cancer (NSCLC) is still not clear. Our results revealed that Fbxo6 expression is correlated with early TNM stage and favorable overall survival of NSCLC patients. Further in vitro experiments showed that Fbxo6 inhibits proliferation, facilitates apoptosis and promotes the sensitivity of cisplatin via decreased expression and phosphorylation of Chk1. Thus, Fbxo6 may be a useful prognosis marker and therapeutic target to overcome the chemoresistance of cisplatin-based chemotherapy agents in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Células A549 , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Estadiamento de Neoplasias , Prognóstico , Proteínas Ligases SKP Culina F-Box/deficiência , Proteínas Ligases SKP Culina F-Box/genética , Tiofenos/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia
18.
J Exp Clin Cancer Res ; 38(1): 40, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691485

RESUMO

BACKGROUND: Zinc-finger protein-326 (ZNF326) was initially found in the NIH3T3 cell line to regulate cell growth, however, the expression and underlying role of ZNF326 in human tumours, especially in glioma, is not fully understood. METHODS: Immunohistochemistry was applied to detect the expression of ZNF326 in glioma tissues, and statistical analysis was used to analyse the relationship between ZNF326 expression and clinicopathological factors. The effect of ZNF326 on glioma cells proliferation and invasion was conducted by functional experiments both in vivo and in vitro. Chromatin immunoprecipitation and dual-luciferase assays were performed to demonstrate that histone deacetylase enzyme-7 (HDAC7) is the target gene of ZNF326. Immunoblotting, real-time PCR, GST-pulldown and co-immunoprecipitation assays were used to clarify the underlying role of ZNF326 on Wnt pathway activation. RESULTS: High nuclear expression of ZNF326 was observed in glioma cell lines and tissues, and closely related with advanced tumour grade in the patients. Moreover, ectopic ZNF326 expression promoted the proliferation and invasiveness of glioma cells. Mechanistically, ZNF326 could activate HDAC7 transcription by binding to a specific promoter region via its transcriptional activation domain and zinc-finger structures. The interaction of the up-regulated HDAC7 with ß-catenin led to a decrease in ß-catenin acetylation level at Lys-49, followed by a decrease in ß-catenin phosphorylation level at Ser-45. These changes in ß-catenin posttranscriptional modification levels promoted its redistribution and import into the nucleus. Additionally, ZNF326 directly associated with ß-catenin in the nucleus, and enhanced the binding of ß-catenin to TCF-4, serving as a co-activator in stimulating Wnt pathway. CONCLUSIONS: Our findings elucidated ZNF326 promotes the malignant phenotype of human glioma via ZNF326-HDAC7-ß-catenin signalling. This study reveals the vital role and mechanism of ZNF326 in the malignant progression of glioma, and provides the reference for finding biomarkers and therapeutic targets for glioma.


Assuntos
Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Histona Desacetilases/metabolismo , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Transporte/genética , Movimento Celular , Proliferação de Células , Feminino , Seguimentos , Glioma/genética , Glioma/metabolismo , Histona Desacetilases/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Células Tumorais Cultivadas , Proteína Wnt1/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
19.
Mol Carcinog ; 58(5): 767-776, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30604908

RESUMO

TIMM50 (Translocase of the inner mitochondrial membrane 50), also called TIM50, plays an essential role in mitochondrial membrane transportation. The existing literature suggests that TIMM50 may perform as an oncogenetic protein in breast cancer. However, the molecular mechanism, especially in human non-small cell lung cancer (NSCLC), is uncertain to date. In the present study, using immunohistochemistry, we found that TIMM50 expression significantly correlated with larger tumor size (P = 0.049), advanced TNM stage (P = 0.001), positive regional lymph node metastasis (P = 0.007), and poor overall survival (P = 0.001). Proliferation and invasion assay showed that TIMM50 dramatically promoted the ability of proliferation and invasion of NSCLC cells. Subsequent Western blotting results revealed that TIMM50 enhanced the expression of Cyclin D1 and Snail, and inhibited the expression of E-cadherin. Moreover, TIMM50 facilitated the expression of phosphorylated ERK and P90RSK. Incorporation of ERK inhibitor counteracted the upregulating expression of CyclinD1, and Snail, and downregulating expression of E-cadherin expression induced by TIMM50 overexpression. In conclusion, our data indicated that TIMM50 facilitated tumor proliferation and invasion of NSCLC through enhancing phosphorylation of its downstream ERK/P90RSK signaling pathway. We speculated that TIMM50 might be a useful prognosis marker of NSCLC patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Adulto , Idoso , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/secundário , Estudos de Casos e Controles , Proliferação de Células , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica , Fosforilação , Prognóstico , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas
20.
J Cell Physiol ; 234(6): 8899-8907, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30311220

RESUMO

ZC3H13 is a canonical CCCH zinc finger protein, which harbors a somatic frame-shift mutation in colorectal cancer (CRC). However, its expression and biological function were still uncertain. In the current study, we found that ZC3H13 was served as a tumor suppressor in CRC cells, which decreased the expression of Snail, Cyclin D1, and Cyclin E1, and increased the expression of Occludin and Zo-1 through inactivating Ras-ERK signaling pathway. Furthermore, reduction of ZC3H13 associated with advanced TNM stage (p = 0.02), positive regional lymph node metastasis ( p = 0.01). Taken together, the current study indicated that ZC3H13 may be an upstream regulator of Ras-ERK signaling pathway and suppressed invasion and proliferation of CRC.


Assuntos
Neoplasias do Colo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Sistema de Sinalização das MAP Quinases , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...