Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Medicine (Baltimore) ; 103(19): e38144, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728457

RESUMO

Papillary thyroid carcinoma (PTC) prognosis may be deteriorated due to the metastases, and anoikis palys an essential role in the tumor metastasis. However, the potential effect of anoikis-related genes on the prognosis of PTC was unclear. The mRNA and clinical information were obtained from the cancer genome atlas database. Hub genes were identified and risk model was constructed using Cox regression analysis. Kaplan-Meier (K-M) curve was applied for the survival analysis. Immune infiltration and immune therapy response were calculated using CIBERSORT and TIDE. The identification of cell types and cell interaction was performed by Seurat, SingleR and CellChat packages. GO, KEGG, and GSVA were applied for the enrichment analysis. Protein-protein interaction network was constructed in STRING and Cytoscape. Drug sensitivity was assessed in GSCA. Based on bulk RNA data, we identified 4 anoikis-related risk signatures, which were oncogenes, and constructed a risk model. The enrichment analysis found high risk group was enriched in some immune-related pathways. High risk group had higher infiltration of Tregs, higher TIDE score and lower levels of monocytes and CD8 T cells. Based on scRNA data, we found that 4 hub genes were mainly expressed in monocytes and macrophages, and they interacted with T cells. Hub genes were significantly related to immune escape-related genes. Drug sensitivity analysis suggested that cyclin dependent kinase inhibitor 2A may be a better chemotherapy target. We constructed a risk model which could effectively and steadily predict the prognosis of PTC. We inferred that the immune escape may be involved in the development of PTC.


Assuntos
Anoikis , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Anoikis/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Prognóstico , Análise de Célula Única/métodos , Análise de Sequência de RNA , Mapas de Interação de Proteínas/genética , Feminino , Masculino , Estimativa de Kaplan-Meier , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica/métodos
2.
J Hazard Mater ; 470: 134293, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615646

RESUMO

Imidacloprid enters the water environment through rainfall and causes harm to aquatic crustaceans. However, the potential chronic toxicity mechanism of imidacloprid in crayfish has not been comprehensively studied. In this study, red claw crayfish (Cherax quadricarinatus) were exposed to 11.76, 35.27, or 88.17 µg/L imidacloprid for 30 days, and changes in the physiology and biochemistry, gut microbiota, and transcriptome of C. quadricarinatus and the interaction between imidacloprid, gut microbiota, and genes were studied. Imidacloprid induced oxidative stress and decreased growth performance in crayfish. Imidacloprid exposure caused hepatopancreas damage and decreased serum immune enzyme activity. Hepatopancreatic and plasma acetylcholine decreased significantly in the 88.17 µg/L group. Imidacloprid reduced the diversity of the intestinal flora, increased the abundance of harmful flora, and disrupted the microbiota function. Transcriptomic analysis showed that the number of up-and-down-regulated differentially expressed genes (DEGs) increased significantly with increasing concentrations of imidacloprid. DEG enrichment analyses indicated that imidacloprid inhibits neurotransmitter transduction and immune responses and disrupts energy metabolic processes. Crayfish could alleviate imidacloprid stress by regulating antioxidant and detoxification-related genes. A high correlation was revealed between GST, HSPA1s, and HSP90 and the composition of gut microorganisms in crayfish under imidacloprid stress. This study highlights the negative effects and provides detailed sequencing data from transcriptome and gut microbiota to enhance our understanding of the molecular toxicity of imidacloprid in crustaceans.


Assuntos
Astacoidea , Microbioma Gastrointestinal , Neonicotinoides , Nitrocompostos , Transcriptoma , Poluentes Químicos da Água , Animais , Neonicotinoides/toxicidade , Astacoidea/efeitos dos fármacos , Astacoidea/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Nitrocompostos/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo
3.
Sci Total Environ ; 919: 170762, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340862

RESUMO

Microbial remediation of oil-contaminated groundwater is often limited by the low temperature and lack of nutrients in the groundwater environment, resulting in low degradation efficiency and a short duration of effectiveness. In order to overcome this problem, an immobilized composite microbial material and two types of slow release agents (SRA) were creatively prepared. Three oil-degrading bacteria, Serratia marcescens X, Serratia sp. BZ-L I1 and Klebsiella pneumoniae M3, were isolated from oil-contaminated groundwater, enriched and compounded, after which the biodegradation rate of the Venezuelan crude oil and diesel in groundwater at 15 °C reached 63 % and 79 %, respectively. The composite microbial agent was immobilized on a mixed material of silver nitrate-modified zeolite and activated carbon with a mass ratio of 1:5, which achieved excellent oil adsorption and water permeability performance. The slow release processes of spherical and tablet SRAs (SSRA, TSRA) all fit well with the Korsmeyer-Peppas kinetic model, and the nitrogen release mechanism of SSRA N2 followed Fick's law of diffusion. The highest oil removal rates by the immobilized microbial material combined with SSRA N2 and oxygen SRA reached 94.9 % (sand column experiment) and 75.1 % (sand tank experiment) during the 45 days of remediation. Moreover, the addition of SRAs promoted the growth of oil-degrading bacteria based on microbial community analysis. This study demonstrates the effectiveness of using immobilized microbial material combined with SRAs to achieve a high efficiency and long-term microbial remediation of oil contaminated shallow groundwater.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Areia , Biodegradação Ambiental , Bactérias/metabolismo , Água Subterrânea/microbiologia , Poluentes Químicos da Água/análise
4.
Front Microbiol ; 15: 1319895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343715

RESUMO

In recent years, the problems associated with continuous cropping (CC) that cause soil degradation have become increasingly serious. As a key soil quality property, dissolved organic matter (DOM) affects the circulation of carbon and nutrients and the composition of bacterial communities in soil. However, research on the changes in the molecular composition of DOM after CC is limited. In this study, the soil chemical properties, DOM chemical diversity, bacterial community structure, and their interactions are explored in the soil samples from different CC years (CC1Y, CC3Y, CC5Y, and CC7Y) of tobacco. With increasing CC year of tobacco, most of the soil chemical properties, such as total carbon, total nitrogen and organic matter, decreased significantly, while dissolved organic carbon first decreased and then increased. Likewise, the trends of DOM composition differed with changing duration of CC, such as the tannin compounds decreased from 18.13 to 13.95%, aliphatic/proteins increased from 2.73 to 8.85%. After 7 years of CC, the soil preferentially produced compounds with either high H/C ratios (H/C > 1.5), including carbohydrates, lipids, and aliphatic/proteins, or low O/C ratios (O/C < 0.1), such as unsaturated hydrocarbons. Furthermore, core microorganisms, including Nocardioides, wb1-P19, Aquabacterium, Methylobacter, and Thiobacillus, were identified. Network analysis further indicated that in response to CC, Methylobacter and Thiobacillus were correlated with the microbial degradation and transformation of DOM. These findings will improve our understanding of the interactions between microbial community and DOM in continuous cropping soil.

5.
Fish Shellfish Immunol ; 147: 109437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360192

RESUMO

Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.


Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Larva/microbiologia , Astacoidea , Aeromonas hydrophila/genética , Peptídeos Antimicrobianos , Antioxidantes , Dieta , Expressão Gênica , Antibacterianos
6.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185392

RESUMO

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Assuntos
Amônia , Gastrópodes , Animais , Dieta , Antioxidantes/metabolismo , Gastrópodes/metabolismo , Imunidade Inata , Expressão Gênica , Músculos/metabolismo , Superóxido Dismutase/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Xantofilas
7.
Fish Shellfish Immunol ; 145: 109288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104697

RESUMO

This study aimed to evaluate the potential benefits of chitosan oligosaccharide (COS) on red claw crayfish (Cherax quadricarinatus) and explore its underlying mechanisms. The crayfish were randomly divided into six groups, and the diets were supplemented with COS at levels of 0 (C0), 0.2 (C1), 0.4 (C2), 0.6 (C3), 0.8 (C4), and 1 (C5) g kg-1. Treatment with COS significantly improved the growth performance of the crayfish with a higher weight gain rate (WGR) and specific growth rate (SGR) in the C2 group compared to the C0 group. Additionally, the content of crude protein in the crayfish muscles in the C1 group was significantly higher than that of the C0 group. Regarding non-specific immunity, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and alkaline phosphatase (AKP), and the levels of expression of the genes related to immunity (SOD; anti-lipopolysaccharide factor [ALF]; thioredoxin1 [Trx1]; C-type lysozyme, [C-LZM]; and GSH-Px) in the hepatopancreas and hemolymph increased significantly (P < 0.05) after supplementation with 0.4 g kg-1 of COS, while the content of malondialdehyde (MDA) decreased (P < 0.05). The survival rate of C. quadricarinatus increased (P < 0.05) in the C2, C3, C4, and C5 groups after the challenge with Aeromonas hydrophila. This study found that COS has the potential to modulate the composition of the intestinal microbiota and significantly reduce the abundance of species of the phylum Proteobacteria and the genera Aeromonas and Vibrio in the gut of C. quadricarinatus, while the abundance of bacteria in the phylum Firmicutes and the genus Candidatus_Hepatoplasma improved significantly. This study suggests that the inclusion of COS in the diet of C. quadricarinatus can enhance growth, boost immunity, and increase resistance to infection with A. hydrophila, especially when supplemented at 0.4-0.8 g kg-1.


Assuntos
Quitosana , Microbioma Gastrointestinal , Animais , Astacoidea , Quitosana/farmacologia , Dieta , Suplementos Nutricionais/análise , Superóxido Dismutase/metabolismo , Oligossacarídeos/farmacologia , Imunidade Inata , Ração Animal/análise
8.
Medicine (Baltimore) ; 102(46): e35923, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986376

RESUMO

This study focused on screening novel markers associated with cellular senescence for predicting the prognosis of breast cancer. The RNA-seq expression profile of BRCA and clinical data were obtained from TCGA. The pam algorithm was used to cluster patients based on senescence-related genes. The weighted gene co-expression network analysis was used to identify co-expressed genes, and LASSO-Cox analysis was performed to build a risk prognosis model. The performance of the model was also evaluated. We additionally explored the role of senescence in cancer development and possible regulatory mechanism. The patients were clustered into 2 subtypes. A total of 5259 genes significantly related to senescence were identified by weighted gene co-expression network analysis. LASSO-Cox finally established a 6-signature risk model (ADAMTS8, DCAF12L2, PCDHA10, PGK1, SLC16A2, and TMEM233) that exhibited favorable and stable performance in our training, validation, and whole BRCA datasets. Furthermore, the superiority of our model was also observed after comparing it to other published models. The 6-signature was proved to be an independent risk factor for prognosis. In addition, mechanism prediction implied the activation of glycometabolism processes such as glycolysis and TCA cycle under the condition of senescence. Glycometabolism pathways were further found to negatively correlate with the infiltration level of CD8 T-cells and natural killer cells but positively correlate with M2 macrophage infiltration and expressions of tissue degeneration biomarkers, which suggested the deficit immune surveillance and risk of tumor migration. The constructed 6-gene model based on cellular senescence could be an effective indicator for predicting the prognosis of BRCA.


Assuntos
Neoplasias da Mama , Simportadores , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , Senescência Celular/genética , Algoritmos , Linfócitos T CD8-Positivos , Proteínas ADAMTS , Transportadores de Ácidos Monocarboxílicos
9.
Antioxidants (Basel) ; 12(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891881

RESUMO

Alpinia oxyphylla is a homology of medicine and food. This study aims to investigate the dominant chemical composition and explore the antioxidant properties of the ethanol extract of the leaves and stems of A. oxyphylla (AOE) on juvenile shrimp, Litopenaeus vannamei. An in vitro test showed that AOE and its dominant chemical composition procyanidin B-2 (1) and epicatechin (2) presented DPPH and ABTS radical scavenging activities. A shrimp feeding supplement experiment revealed that shrimp growth parameters and muscle composition were improved significantly when fed with a 200 mg/Kg AOE additive. Meanwhile, the activities of antioxidant enzymes (CAT, GSH-Px, SOD, and T-AOC) in serum and the liver and the expression of related genes (LvMn-SOD, LvCAT, LvproPo, and LvGSH-Px) were enhanced with various degrees in different AOE additive groups while the content of MDA was significantly decreased. Moreover, the antioxidative effect of AOE additive groups on shrimp was also observed in an acute ammonia nitrogen stress test.

10.
Animals (Basel) ; 13(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37684985

RESUMO

Escherichia coli (EC), Staphylococcus aureus (SA), Bacillus subtilis (BS), Rhodopseudomonas palustris (RP), Saccharomyces cerevisiae (SC) and Lactobacillus plantarum (LP) were selected as feed additives for black soldier fly (Hermetia illucens) by tracking the growth performance, proximate composition, digestive ability and antibacterial peptides (AMPs) content in the first trial. Microorganism efficiency screening results showed that RP could improve growth performance, digestive ability and AMP content of H. illucens. Therefore, RP was selected to prepare the diets and was incorporated into diets for H. illucens at levels of 0 (R0), 1.22 × 106 (R1), 1.22 × 107 (R2), 1.22 × 108 (R3), 1.22 × 109 (R4) and 1.22 × 1010 (R5) CFU/g. After 5 d of feeding, larvae fed the R2-R5 diets had higher weight gain and specific growth rates. Different concentrations of RP had no significant effect on larval body composition. R4-R5 could improve the digestibility and expression of AMPs in larvae. Moreover, RP could significantly increase the abundance of Lactobacillus and Rhodopseudomonas and decrease the abundance of Proteus and Corynebacterium. Therefore, RP is superior to the other strains as a feed additive for H. illucens larvae, and we recommend the addition of 1.22 × 109-1.22 × 1010 CFU/g RP to promote the growth and AMP content of H. illucens.

11.
Environ Sci Pollut Res Int ; 30(47): 104135-104147, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37698794

RESUMO

Due to natural agents and human activities, large quantities of microplastics enter the marine environment. As an emerging pollutant, MPs have attracted worldwide attention and become a great challenge in recent years. Sodium alginate is a kind of natural polysaccharide with non-toxic, stability, and low cost. In this study, sodium alginate sponge was prepared by secondary freeze-drying technology. Alginate sponge contains a large number of hydrophilic groups; thus, alginate sponge has super water-absorbed (the water absorption rate range from 1193-5232%). Meanwhile, the alginate sponge has high porosity of 81.93% and excellent mechanical properties. The removal efficiency of 100 mg·L-1 microplastics by alginate sponge reached up to 92.3%. The 1 mg·L-1 and 10 mg·L-1 microplastics can be completely absorbed in 27 h and 60 h, respectively. The adsorption mechanism of microplastics adsorbed onto alginate sponge included intra-particle diffusion, hydrogen bonds interactions, and π-π interactions. In addition, the adsorption of MPs loaded Cu2+/Na+ by sponge in complex aqueous environments is still significant. This study expands the development prospect of sodium alginate sponge materials in the field of water treatment and provides a new green approach for the removal of microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos/química , Alginatos/química , Porosidade , Poluentes Químicos da Água/análise , Adsorção
12.
Fish Shellfish Immunol ; 141: 109050, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666313

RESUMO

4-Nonylphenol (4-NP) is one of the common endocrine-disrupting chemicals (EDCs) in estuaries and coastal zones, which can exert detrimental effects on the physiological function of aquatic organisms. However, the molecular response triggered by 4-NP remains largely unknown in Pacific white shrimp (Litopenaeus vannamei). In this study, transcriptomic analysis was performed to investigate the underlying mechanisms of 4-NP toxicity in the hepatopancreas of L. vannamei. Nine RNA-Seq libraries were generated from L. vannamei at 0 h, 24 h, and 48 h following exposure to 4-NP. Compared with 0 h vs 24 h, 962 up- and 463 down-regulated differentially expressed genes (DEGs) were identified, indicating that many genes in L. vannamei were induced to resist adverse circumstances by 4-NP exposure. In contrast, 902 up- and 1027 down-regulated DEGs were revealed in the comparison of 0 h vs 48 h, demonstrating that prolonged exposure to the stress from 4-NP resulted in more inhibited genes. To validate the accuracy of the transcriptome data, eight DEGs were selected for quantitative real-time polymerase chain reaction (qRT-PCR), which were consistent with the RNA-Seq results. Through KEGG pathway enrichment analysis, three specific pathways related to hormonal effects and endocrine function of L. vannamei were enriched significantly, including tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. After 4-NP stress, genes involved in tyrosine metabolism (Tyr) and melanogenesis pathway (AC, CBP, Wnt, Frizzled, Tcf, and Ras) were induced to promote melanin pigment to help shrimp resist adverse environments. In the insect hormone biosynthesis, ALDH, CYP15A1, CYP15A1/C1, and JHE genes were activated to synthesize juvenile hormone (JH), while Spook, Phm, Sad, and CYP18A1 were induced to generate molting hormone. There is an enhanced interaction between the molting hormone and JH, with JH playing a dominant role and maintaining its "classic status quo action". Our study demonstrated that 4-NP exposure led to impairments of biological functions in L. vannamei hepatopancreas. The genes and pathways identified provide novel insights into the molecular mechanisms underlying 4-NP toxicity effects in prawns and enrich the information on the toxicity mechanism of crustaceans in response to EDCs exposure.


Assuntos
Hepatopâncreas , Penaeidae , Animais , Hepatopâncreas/metabolismo , Ecdisona/análise , Ecdisona/metabolismo , Ecdisona/farmacologia , Perfilação da Expressão Gênica , Transcriptoma , Penaeidae/fisiologia , Tirosina/metabolismo
13.
Chemosphere ; 338: 139540, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37480960

RESUMO

In the Fenton-like processes, the resources that exist in the system itself (e.g., dissolved oxygen, electron-rich pollutants) are often overlooked. Herein, a novel CuCo-LDO/CN composite catalyst with a strong "metal-π" effect was fabricated by in situ calcination which could activate dissolved oxygen to generate active oxygen species and degrade the electron-rich pollutants directly. The CuCo-LDO/CN (1:10) with the largest specific surface aera, most C-O-M bonds and least oxygen vacancies exhibited the best catalytic performance for tetracycline (TC)degradation (TC removal efficiency 93.2% and mineralization efficiency 40%, respectively, after 40 min at neutral pH) compared to CuCo-LDO and other CuCo-LDO/CN composite catalysts. In the absence of H2O2, dissolved oxygen could be activated by the catalyst to generate O2·-and ·OH, which contributed to approximately 20.7% of TC degradation, providing a faster and cost-effective way for TC removal from wastewater. While in the presence of H2O2, it was activated by CuCo-LDO/CN to generate·OH as the dominant reactive oxygen species and meanwhile TC transferred electrons to H2O2 through C-O-M bonds, accelerating the Cu+/Cu2+ and Co2+/Co3+ redox cycles. The possible degradation pathways of TC were proposed, and the environmental hazard of TC is greatly mitigated according to toxicity prediction.


Assuntos
Poluentes Ambientais , Compostos Heterocíclicos , Peróxido de Hidrogênio/química , Oxigênio , Antibacterianos , Tetraciclina/química , Catálise
14.
Chemosphere ; 333: 138868, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37160170

RESUMO

Chemical fingerprinting is essential for identifying the presence and responding to oil spills that frequently contaminate the groundwater environment of refineries. In this study, crude oil and oil products from the atmospheric and vacuum distillation units of a refinery were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate their chemical variability before and after refinery. A series of experiments involving evaporation and soil column penetration were conducted to simulate refined oil spilling into groundwater and determine appropriate characteristic ratios (CRs) for principal component analysis (PCA) for oil source identification. The simulated study demonstrated that all products had bell-shaped n-alkane distributions, with dominant peaks that remained unchanged or shifted towards longer chain lengths compared to the source oil. Similarly, naphthalene and dibenzothiophene series remained the main PAH components like the source oil. Ten relatively stable CRs were selected for PCA to identify different oil products through the simulated experiments. The chosen CRs were then utilized to identify the sources for two groundwater oil spills recently occurred, one that occurred in an oil depot area, and another near a continuous catalytic reforming unit in a refinery. This study showed that the components with long-chain n-alkanes (n ≥ C18), pristane, phytane, and phenanthrene and dibenzothiophene series PAHs played an important role in the identification of refined oil products spilling into the groundwater environment. The selected CRs provide an effective tool for rapid and accurate identification of oil spills, especially for newly occurring spills in the groundwater environment, which can aid in developing appropriate response strategies.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Óleos/química , Petróleo/análise , Tiofenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos , Poluição por Petróleo/análise
15.
Chemosphere ; 330: 138619, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37031841

RESUMO

Biodegradable candelilla wax (CW) was creatively used for hydrophobic modification of coal fly ash cenospheres (FACs), a waste product from thermal power plants, and a new spherical hollow particulate adsorbent with fast oil adsorption rate and easy agglomeration was prepared. CW was confirmed to physically coat FACs and the optimum mass of wax added to 3 g of FACs was 0.05 g. From a series of batch scale experiments, CW-FACs were found to adsorb oil, reaching adsorption efficiency of 80.6% within 10 s, and aggregate into floating clumps which were easily removed from the water's surface. The oil adsorption efficiency was highly dependent on hydrophobicity of the used adsorbent, the adsorption of Venezuela oil onto CW-FACs was found to be a homogenous monolayer, and the capacity and intensity of the adsorption decreased as temperature increased from 10 to 40 °C. The Langmuir isotherm model was the best fit, with the maximum adsorption capacity achieved at 649.38 mg/g. CW-FACs were also found to be highly stable in concentrated acid, alkaline and salt solutions, as well as for spills of different oil products. Furthermore, the retention rate of the oil adsorption capacity of the CW-FACs after 6 cycles of adsorption-extraction was as high as 93.2%. Therefore, CW-FACs can be widely used, easily recycled, and reused for marine oil spill remediation, which is also a good alternative disposal solution for FACs.


Assuntos
Poluição por Petróleo , Poluentes Químicos da Água , Cinza de Carvão/química , Carvão Mineral , Poluentes Químicos da Água/análise , Compostos Orgânicos , Adsorção
16.
Mol Phylogenet Evol ; 182: 107734, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804428

RESUMO

Identifying cryptic species is important for the assessments of biodiversity. Further, untangling mechanisms underlying the origins of cryptic species can facilitate our understanding of evolutionary processes. Advancements in genomic approaches for non-model systems have offered unprecedented opportunities to investigate these areas. The White Cloud Mountain minnow (Tanichthys albonubes) is a popular freshwater pet fish worldwide but its wild populations in China are critically endangered. Recent research based on a few molecular markers suggested that this species in fact comprised seven cryptic species, of which six were previously unknown. Here, we tested six of these cryptic species and quantified genomic interspecific divergences between species in the T. albonubes complex by analyzing genome-wide restriction site-associated DNA sequencing (RADseq) data generated from 189 individuals sampled from seven populations (including an outgroup congeneric species, T. micagemmae). We found that six cryptic species previously suggested were well supported by RADseq data. The genetic diversity of each species in the T. albonubes complex was low compared with T. micagemmae and the contemporary effective population sizes (Ne) of each cryptic species were small. Phylogenetic analysis showed seven clades with high support values confirmed with Neighbor-Net trees. The pairwise divergences between species in T. albonubes complex were deep and the highly differentiated loci were evenly distributed across the genome. We proposed that the divergence level of T. albonubes complex is at a late stage of cryptic speciation and lacking gene flow. Our findings provide new insights into cryptic speciation and have important implications for conservation and species management of T. albonubes complex.


Assuntos
Cyprinidae , Animais , Genoma , Filogenia , Família Multigênica , Cyprinidae/genética , Análise de Sequência de DNA , Proteínas de Peixes/genética
17.
Environ Res ; 223: 115465, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773642

RESUMO

Bioaugmentation (BA) of oil-contaminated soil by immobilized microorganisms is considered to be a promising technology. However, available high-efficiency microbial agents remain very limited. Therefore, we prepared a SA/GO/C5 immobilized gel pellets by embedding the highly efficient crude oil degrading bacteria Bacillus C5 in the SA/GO composite material. The optimum preparation conditions of SA/GO/C5 immobilized gel pellets were: SA 3.0%, GO 25.0 µg/mL, embedding amount of C5 6%, water bath temperature of 50°C, CaCl2 solution concentration 3% and cross-linking time 20 h. BA experiments were carried out on crude oil contaminated soil to explore the removal effect of SA/GO/C5 immobilized pellets. The results showed that the SA/GO/C5 pellets exhibited excellent mechanical strength and specific surface area, which facilitated the attachment and growth of the Bacillus C5. Compared with free bacteria C5, the addition of SA/GO/C5 significantly promoted the removal of crude oil in soil, reaching 64.92% after 30 d, which was 2.1 times the removal rate of C5. The addition of SA/GO/C5 promoted the abundance of soil exogenous Bacillus C5 and indigenous crude oil degrading bacteria Alcanivorax and Marinobacter. In addition, the enrichment of hydrocarbon degradation-related functional abundance was predicted by PICRUSt2 in the SA/GO/C5 treatment group. This study demonstrated that SA/GO/C5 is an effective method for remediating crude oil-contaminated soil, providing a basis and option for immobilized microorganisms bioaugmentation to remediate organic contaminated soil.


Assuntos
Bacillus , Microbiota , Petróleo , Poluentes do Solo , Bacillus/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo , Hidrocarbonetos , Poluentes do Solo/análise , Bactérias/metabolismo , Solo/química , Microbiologia do Solo
18.
Thorac Cancer ; 14(8): 746-757, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754085

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are related to the pathogenesis and progression of triple-negative breast cancer (TNBC). The aim of this study was to investigate the role and mechanism of hsa_circ_0001925 in TNBC progression. METHODS: Hsa_circ_0001925, microRNA (miR)-1299 and Yin Yang 1 (YY1) levels were examined in TNBC via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. Cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry, wound healing assay and tube formation assay were conducted to estimate the effects of hsa_circ_0001925 on malignant phenotypes of TNBC tumors. Several protein levels were measured with western blot. The regulatory relationship between miR-1299 and hsa_circ_0001925 or YY1 was validated using a dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Xenograft assay was used to estimate the effect of hsa_circ_0001925 in TNBC in vivo. RESULTS: Hsa_circ_0001925 and YY1 levels were upregulated, while miR-1299 abundance was downregulated in TNBC tissues and cells. Hsa_circ_0001925 silencing constrained cell proliferation, migration and angiogenesis whereas it promoted apoptosis in vitro, and hsa_circ_0001925 silencing significantly curbed xenograft tumor growth in vivo. Hsa_circ_0001925 acted as a miRNA sponge for miR-1299. Hsa_circ_0001925 decreased YY1 expression by sponging miR-1299. MiR-1299 downregulation alleviated the effects of hsa_circ_0001925 knockdown on BC progression. MiR-1299 interacted with the 3' untranslated region (3' UTR) of YY1, and YY1 overexpression partly reversed the effects of miR-1299 overexpression on BC progression. CONCLUSION: Our findings showed that hsa_circ_0001925 mediated TNBC progression via regulating miR-1299/YY1 axis, providing a potential target for BC treatment.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Regiões 3' não Traduzidas , Apoptose , Contagem de Células , Proliferação de Células , Fator de Transcrição YY1
19.
Parasit Vectors ; 16(1): 18, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653886

RESUMO

BACKGROUND: More than half of the world's population suffers from epidemic diseases that are spread by mosquitoes. The primary strategy used to stop the spread of mosquito-borne diseases is vector control. Interference RNA (RNAi) is a powerful tool for controlling insect populations and may be less susceptible to insect resistance than other strategies. However, public concerns have been raised because of the transfer of antibiotic resistance marker genes to environmental microorganisms after integration into the recipient genome, thus allowing the pathogen to acquire resistance. Therefore, in the present study, we modified the 3-hydroxykynurenine transaminase (3hkt) and hormone receptor 3 (hr3) RNAi vectors to remove antibiotic resistance marker genes and retain the expression cassette of the inverse repeat sequence of the 3hkt/hr3 target gene. This recombinant microalgal marker-free RNAi insecticide was subsequently added to the suburban water in a simulated-field trial to test its ability to control mosquito population. METHODS: The expression cassette of the 3hkt/hr3 inverted repeat sequence and a DNA fragment of the argininosuccinate lyase gene without the ampicillin resistance gene were obtained using restriction enzyme digestion and recovery. After the cotransformation of Chlamydomonas, the recombinant algae was then employed to feed Aedes albopictus larvae. Ten and 300 larvae were used in small- and large-scale laboratory Ae.albopictus feeding trials, respectively. Simulated field trials were conducted using Meishe River water that was complemented with recombinant Chlamydomonas. Moreover, the impact of recombinant microalgae on phytoplankton and zooplankton in the released water was explored via high-throughput sequencing. RESULTS: The marker-free RNAi-recombinant Chlamydomonas effectively silenced the 3hkt/hr3 target gene, resulting in the inhibition of Ae. albopictus development and also in the high rate of Ae. albopictus larvae mortality in the laboratory and simulated field trials. In addition, the results confirmed that the effect of recombinant Chlamydomonas on plankton in the released water was similar to that of the nontransgenic Chlamydomonas, which could reduce the abundance and species of plankton. CONCLUSIONS: The marker-free RNAi-recombinant Chlamydomonas are highly lethal to the Ae. albopictus mosquito, and their effect on plankton in released water is similar to that of the nontransgenic algal strains, which reduces the abundance and species of plankton. Thus, marker-free recombinant Chlamydomonas can be used for mosquito biorational control and mosquito-borne disease prevention.


Assuntos
Aedes , Chlamydomonas , Inseticidas , Animais , Aedes/genética , Plâncton , Chlamydomonas/genética , Mosquitos Vetores , Inseticidas/farmacologia , Controle de Mosquitos , Animais Geneticamente Modificados , Larva/genética
20.
J Hazard Mater ; 447: 130808, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36669400

RESUMO

Biodegradation is one of the safest and most economical methods for the elimination of toxic chlorophenols and crude oil from the environment. In this study, aerobic degradation of the aforementioned compounds by composite microbial agent B-Cl, which consisted of Bacillus B1 and B2 in a 3:2 ratio, was analyzed. The biodegradation mechanism of B-Cl was assessed based on whole genome sequencing, Fourier transform infrared spectroscopy and gas chromatographic analyses. B-Cl was most effective at reducing Cl- concentrations (65.17%) and crude oil biodegradation (59.18%) at 7 d, which was when the content of alkanes ≤ C30 showed the greatest decrease. Furthermore, adding B-Cl solution to soil significantly decreased the 2,4-DCP and oil content to below the detection limit and by 80.68%, respectively, and reconstructed of the soil microbial into a system containing more CPs-degrading (exaA, frmA, L-2-HAD, dehH, ALDH, catABE), aromatic compounds-degrading (pcaGH, catAE, benA-xylX, paaHF) and alkane- and fatty acid-degrading (alkB, atoB, fadANJ) microorganisms. Moreover, the presence of 2,4-DCP was the main hinder of the observed effects. This study demonstrates the importance of adding B-Cl solution to determine the interplay of CPs with microbes and accelerating oil degradation, which can be used for in-situ bioremediation of CPs and oil-contaminated soil.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Petróleo/metabolismo , Microbiologia do Solo , Alcanos/metabolismo , Solo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...