Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Sports Med ; 52(6): 1428-1438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619003

RESUMO

BACKGROUND: Rotator cuff tears have been repaired using the transosseous method for decades. The direct suture (DS) technique has been widely used for rotator cuff tears; however, the retear rate is relatively high. Suture anchors are now used frequently for rotator cuff repair (RCR) in accordance with recent developments in materials. However, polyether ether ketone (PEEK) may still cause complications such as the formation of cysts and osteophytes. Some studies have developed the inlay suture (IS) technique for RCR. PURPOSE/HYPOTHESIS: To compare how 3 different surgical techniques-namely, the DS, IS, and PEEK suture anchor (PSA)-affect tendon-bone healing after RCR. We hypothesized that the IS technique would lead to better tendon-to-bone healing and that the repaired structure would be similar to the normal enthesis. STUDY DESIGN: Controlled laboratory study. METHODS: Acute infraspinatus tendon tears were created in 36 six-month-old male rabbits, which were divided into 3 groups based on the technique used for RCR: DS, IS, and PSA. Animals were euthanized at 6 and 12 weeks postoperatively and underwent a histological assessment and imaging. The expression of related proteins was demonstrated by immunohistochemistry and immunofluorescence staining. Mechanical properties were evaluated by biomechanical testing. RESULTS: At 12 weeks, regeneration of the enthesis was observed in the 3 groups. However, the DS group showed a lower type I collagen content than the PSA and IS groups, which was similar to the results for scleraxis. The DS group displayed a significantly inferior type II collagen expression and proteoglycan deposition after safranin O/fast green and sirius red staining. With regard to runt-related transcription factor 2 and alkaline phosphatase, the IS group showed upregulated expression levels compared with the other 2 groups. CONCLUSION: Compared with the DS technique, the PSA and IS techniques contributed to the improved maturation of tendons and fibrocartilage regeneration, while the IS technique particularly promoted osteogenesis at the enthesis. CLINICAL RELEVANCE: The IS and PSA techniques may be more beneficial for tendon-bone healing after RCR.


Assuntos
Benzofenonas , Cetonas , Polietilenoglicóis , Polímeros , Lesões do Manguito Rotador , Manguito Rotador , Âncoras de Sutura , Técnicas de Sutura , Animais , Coelhos , Masculino , Lesões do Manguito Rotador/cirurgia , Manguito Rotador/cirurgia , Cicatrização , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069378

RESUMO

Patients receiving cranial radiotherapy for primary and metastatic brain tumors may experience radiation-induced brain injury (RIBI). Thus far, there has been a lack of effective preventive and therapeutic strategies for RIBI. Due to its complicated underlying pathogenic mechanisms, it is rather difficult to develop a single approach to target them simultaneously. We have recently reported that Reprimo (RPRM), a tumor suppressor gene, is a critical player in DNA damage repair, and RPRM deletion significantly confers radioresistance to mice. Herein, by using an RPRM knockout (KO) mouse model established in our laboratory, we found that RPRM deletion alleviated RIBI in mice via targeting its multiple underlying mechanisms. Specifically, RPRM knockout significantly reduced hippocampal DNA damage and apoptosis shortly after mice were exposed to whole-brain irradiation (WBI). For the late-delayed effect of WBI, RPRM knockout obviously ameliorated a radiation-induced decline in neurocognitive function and dramatically diminished WBI-induced neurogenesis inhibition. Moreover, RPRM KO mice exhibited a significantly lower level of acute and chronic inflammation response and microglial activation than wild-type (WT) mice post-WBI. Finally, we uncovered that RPRM knockout not only protected microglia against radiation-induced damage, thus preventing microglial activation, but also protected neurons and decreased the induction of CCL2 in neurons after irradiation, in turn attenuating the activation of microglial cells nearby through paracrine CCL2. Taken together, our results indicate that RPRM plays a crucial role in the occurrence of RIBI, suggesting that RPRM may serve as a novel potential target for the prevention and treatment of RIBI.


Assuntos
Lesões Encefálicas , Lesões por Radiação , Animais , Humanos , Camundongos , Apoptose , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/prevenção & controle , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Inflamação/patologia , Microglia , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Lesões por Radiação/patologia
3.
Eur Radiol ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932390

RESUMO

OBJECTIVE: To investigate the potential applicability of AI-assisted compressed sensing (ACS) in knee MRI to enhance and optimize the scanning process. METHODS: Volunteers and patients with sports-related injuries underwent prospective MRI scans with a range of acceleration techniques. The volunteers were subjected to varied ACS acceleration levels to ascertain the most effective level. Patients underwent scans at the determined optimal 3D-ACS acceleration level, and 3D compressed sensing (CS) and 2D parallel acquisition technology (PAT) scans were performed. The resultant 3D-ACS images underwent 3.5 mm/2.0 mm multiplanar reconstruction (MPR). Experienced radiologists evaluated and compared the quality of images obtained by 3D-ACS-MRI and 3D-CS-MRI, 3.5 mm/2.0 mm MPR and 2D-PAT-MRI, diagnosed diseases, and compared the results with the arthroscopic findings. The diagnostic agreement was evaluated using Cohen's kappa correlation coefficient, and both absolute and relative evaluation methods were utilized for objective assessment. RESULTS: The study involved 15 volunteers and 53 patients. An acceleration factor of 10.69 × was identified as optimal. The quality evaluation showed that 3D-ACS provided poorer bone structure visualization, and improved cartilage visualization and less satisfactory axial images with 3.5 mm/2.0 mm MPR than 2D-PAT. In terms of objective evaluation, the relative evaluation yielded satisfactory results across different groups, while the absolute evaluation revealed significant variances in most features. Nevertheless, high levels of diagnostic agreement (κ: 0.81-0.94) and accuracy (0.83-0.98) were observed across all diagnoses. CONCLUSION: ACS technology presents significant potential as a replacement for traditional CS in 3D-MRI knee scans, allowing thinner MPRs and markedly faster scans without sacrificing diagnostic accuracy. CLINICAL RELEVANCE STATEMENT: 3D-ACS-MRI of the knee can be completed in the 160 s with good diagnostic consistency and image quality. 3D-MRI-MPR can replace 2D-MRI and reconstruct images with thinner slices, which helps to optimize the current MRI examination process and shorten scanning time. KEY POINTS: • AI-assisted compressed sensing technology can reduce knee MRI scan time by over 50%. • 3D AI-assisted compressed sensing MRI and related multiplanar reconstruction can replace traditional accelerated MRI and yield thinner 2D multiplanar reconstructions. • Successful application of 3D AI-assisted compressed sensing MRI can help optimize the current knee MRI process.

4.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445996

RESUMO

This study aimed to design a novel mouse model of chronic photoaging. We used three different species of mice (C57BL/6J, ICR, and KM) to create a chronic photoaging model of the skin. The irradiation time was gradually increased for 40 consecutive days. The skins of the mice were removed on day 41 and subjected to staining to observe them for morphological changes. Immunohistochemistry was used to detect tumor necrosis factor-α (TNF-α) and p53 expression; superoxide dismutase (SOD) and malondialdehyde (MDA) were measured as well. Compared with C57BL/J mice, which showed hyperpigmentation, the irradiated skin of ICR and KM mice showed more obvious skin thickening and photoaging changes of the collagen and elastic fibers. KM mice had higher levels of inflammation, oxidative stress, and senescent cells. Compared with the 5-month-old KM mice, the photoaging changes of the 9-month-old KM mice were more pronounced, the SOD values were lower, and the MDA values were higher. In summary, KM mice have higher levels of abnormal elastic fibers, inflammation, cellular senescence, and oxidative stress than ICR mice, and are more suitable for studies related to chronic skin photoaging. C57BL/6J mice were found to be suitable for studies related to skin pigmentation due to photoaging.


Assuntos
Envelhecimento da Pele , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Pele/metabolismo , Superóxido Dismutase/metabolismo , Raios Ultravioleta/efeitos adversos
5.
STAR Protoc ; 4(2): 102317, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37195868

RESUMO

Exploring the essential role of Importin 11 (IPO11) in the nuclear translocation of its potential cargo proteins requires an efficient means of IPO11 deletion and re-expression. Here, we present a protocol for the generation of IPO11 deletion using CRISPR-Cas9 and re-expression using plasmid transfection in H460 non-small cell lung cancer cells. We describe steps for lentiviral transduction of H460 cells, single clone selection, and expansion and validation of cell colonies. We then detail plasmid transfection and validation of transfection efficiency. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.

6.
J Cancer Res Clin Oncol ; 149(12): 9999-10013, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37256381

RESUMO

PURPOSE: This study aimed to explore the correlations among heavy metals concentration, histologic subtypes and molecular characteristics in patients with non-small cell lung cancer (NSCLC). METHODS: In this study, an NGS panel of 82 tumor-associated genes was used to identify genomic alternations in 180 newly diagnosed patients with NSCLC. The concentrations of 18 heavy metals in the serum samples were detected by inductively coupled plasma emission spectrometry (ICP-MS). RESULTS: A total of 243 somatic mutations of 25 mutant genes were identified in 115 of 148 patients with LUAD and 45 somatic mutations of 15 mutant genes were found in 24 of 32 patients with LUSC. The genomic alternations, somatic interactions, traditional serum biomarkers, and heavy metals were markedly different between patients with LUAD and LUSC. Moreover, patients with LUSC were significantly positively correlated with Ba, but not LUAD. Lastly, patients with EGFR mutations presented significant negative correlations with Cd and Sr, whereas patients with TP53 mutations showed a significant positive correlation with Pb. CONCLUSION: The genomic alternations, somatic interactions, traditional serum biomarkers, and heavy metals were different between patients with LUAC and LUSC, and heavy metals (e.g., Ba, Pb, and Cd) may contribute to the tumorigenesis of NSCLC with different histological and molecular subtypes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Cádmio , Chumbo , Genômica
7.
iScience ; 25(10): 105115, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185355

RESUMO

How the ataxia telangiectasia mutated (ATM) protein kinase, a core protein in DNA damage response, is regulated at post-transcription level remains unclear. Here it is identified that protein Reprimo (RPRM) downregulates ATM protein levels, resulting in impaired DNA repair and enhanced cellular radiosensitivity. Mechanistically, although primarily localized in the cytoplasm, RPRM translocates to the nucleus shortly after induced by X-irradiation, interacts with ATM and promotes its nuclear export and proteasomal degradation. The RPRM nuclear translocation involves its phosphorylation at serine 98 mediated by cyclin-dependent kinases 4/6 (CDK4/6), and requires Importin-11 (IPO11). Of importance, IPO11-regulated RPRM nuclear import upon irradiation is essential for its regulation on ATM. Thus, RPRM overexpression and its phosphorylation inhibition sensitize cells to genotoxic agents such as irradiation, whereas RPRM deficiency significantly increases resistance to radiation-induced damage both in vitro and in vivo. These findings establish a crucial regulatory mechanism in which ATM is negatively modulated by RPRM.

8.
Huan Jing Ke Xue ; 43(8): 4292-4300, 2022 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-35971725

RESUMO

In order to improve the phytoextraction efficiency of Xanthium sibiricum on farmland soil that had been contaminated by Cd and As, this study explored the effects of chelating agents and organic acids (EDTA, SAP, CA, and MA) on the extraction of Cd and As heavy metals using X. sibiricum. The results showed that the four different chelating agents and organic acids had little effect on the biomass of the roots, stems, and leaves of X. sibiricum. However, they had different effects on the concentrations and accumulation of Cd and As in various organs of X. sibiricum. Compared with the those in the CK treatment, EDTA, SAP, CA, and MA significantly increased the Cd concentrations in the leaves of X. sibiricum by 44.1%, 32.4%, 41.2%, and 38.2% and the As concentrations in the roots of X. sibiricum by 89.6%, 7.4%, 94.8%, and 61.5%, respectively. The four treatments (EDTA, SAP, CA, and MA) improved the total Cd accumulation of X. sibiricum, with increasing ranges, respectively, of 70.2%, 29.4%, 28.9%, and 33.1%, and the As accumulation increased by 67.0%, 19.6%, 81.9%, and 40.8%, respectively, compared with that of the CK treatment. The four chelating agents and organic acids had different effects on the Cd and As bioconcentration factor and transfer factor of various organs of X. sibiricum. Treatments with EDTA, SAP, CA, and MA resulted in a decrease of 32.7%-38.2% in soil Cd concentrations and a decrease of 14.6%-20.5% in soil As concentrations. These four chelating agents can be used for enhancing the efficiency of extraction Cd and As heavy metals by X. sibiricum.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Xanthium , Biodegradação Ambiental , Cádmio/análise , Quelantes/farmacologia , Ácido Edético/farmacologia , Metais Pesados/análise , Solo , Poluentes do Solo/análise
9.
Cell Biol Int ; 46(12): 2158-2172, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36041213

RESUMO

Reprimo (RPRM), a target gene of p53, is a known tumor suppressor. DNA damage induces RPRM, which triggers p53-dependent G2 arrest by inhibiting cyclin B1/Cdc2 complex activation and promotes DNA damage-induced apoptosis. RPRM negatively regulates ataxia-telangiectasia mutated by promoting its nuclear-cytoplasmic translocation and degradation, thus inhibiting DNA damage. Therefore, RPRM plays a crucial role in DNA damage response. Moreover, the loss of RPRM confers radioresistance in mice, which enables longer survival and less severe intestinal injury after radiation exposure. However, the role of RPRM in radiation-induced hematopoietic system injury remains unknown. Herein, utilizing a RPRM-knockout mouse model, we found that RPRM deletion did not affect steady-state hematopoiesis in mice. However, RPRM knockout significantly alleviated radiation-induced hematopoietic system injury and preserved mouse hematopoietic regeneration in hematopoietic stem cells (HSCs) against radiation-induced DNA damage. Further mechanistic studies showed that RPRM loss significantly increased EGFR expression and phosphorylation in HSCs to activate STAT3 and DNA-PKcs, thus promoting HSC DNA repair and proliferation. These findings reveal the critical role of RPRM in radiation-induced hematopoietic system injury, confirming our hypothesis that RPRM may serve as a novel target for radiation protection.


Assuntos
Reparo do DNA , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/metabolismo , Proliferação de Células/genética , Hematopoese , Radiação Ionizante , Dano ao DNA , Células-Tronco Hematopoéticas , Apoptose , Receptores ErbB/genética , Receptores ErbB/metabolismo
10.
J Radiat Res ; 63(2): 192-201, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35059710

RESUMO

Radiation-induced neurocognitive dysfunction (RIND) has attracted a lot of attention lately due to the significant improvement of the survival of cancer patients after receiving cranial radiotherapy. The detailed mechanisms are not completely understood, but extensive evidence supports an involvement of the inhibition of hippocampal neurogenesis, which may result from radiation-induced depletion of neural stem cells (NSCs) as well as the damage to neurogenic niches. As an important component of neurogenic niches, vascular cells interact with NSCs through different signaling mechanisms, which is similar to the characteristics of radiation-induced bystander effect (RIBE). But whether RIBE is involved in neurogenesis inhibition contributed by the damaged vascular cells is unknown. Thus, the purpose of the present study was to investigate the occurrence of RIBEs in non-irradiated bystander NSCs induced by irradiated bEnd.3 vascular endothelial cells in a co-culture system. The results show that compared with the NSCs cultured alone, the properties of NSCs were significantly affected after co-culture with bEnd.3 cells, and further change was induced without obvious oxidative stress and apoptosis when bEnd.3 cells were irradiated, manifesting as a reduction in the proliferation, neurosphere-forming capability and differentiation potential of NSCs. All these results suggest that the damaged vascular endothelial cells may contribute to neurogenesis inhibition via inducing RIBEs in NSCs, thus leading to RIND.


Assuntos
Efeito Espectador , Células-Tronco Neurais , Diferenciação Celular , Células Endoteliais , Humanos , Neurogênese
11.
Ther Adv Med Oncol ; 13: 1758835921993436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737962

RESUMO

BACKGROUND: Tumor progression following endocrine therapy is considered to indicate resistance to endocrine drugs due to a variety of mechanisms. An insufficient dose of endocrine drugs is one of the causes for treatment failure in some patients with high hormone-receptor (HR)-expressing advanced breast cancer. This study aimed to explore the efficacy of high-dose tamoxifen (TAM) treatment in patients with advanced breast cancer with highly expressed HR. MATERIALS & METHODS: This was a single-arm, phase II pilot study that enrolled patients with advanced breast cancer with high HR expression (estrogen receptor ⩾60% and/or progesterone receptor ⩾60%) following routine endocrine therapy. All enrolled patients received a high-dose of TAM (100 mg/day) until disease progression. The primary endpoint was progression-free survival (PFS). The secondary endpoints included objective response rate (ORR), clinical benefit rate (CBR), overall survival (OS), and safety. Exploratory endpoints included the predictive value of 16α-18F-17ß-fluoroestradiol quantitative positron emission tomography/computed tomography (18F-FES PET/CT) for treatment efficacy. RESULTS: A total of 30 patients were enrolled between September 2017 and February 2019. The median PFS was 6 months [95% confidence interval (CI) 4.9-7.1] and the median OS was 15.6 months (95% CI 8.3-22.9). Five patients experienced a partial response (PR) and none experienced a complete response (CR), with an ORR of 16.7% and CBR of 33.3%. No severe adverse events were observed. Lesions with 18F-FES maximum standardized uptake value (SUVmax) ⩾4 had a significantly longer PFS [median 9.2 months, (95% CI 6.9-11.6)] compared with lesions with a 18F-FES SUVmax <4 [median 4.8 months, (95% CI 3.9-5.6); p = 0.022]. CONCLUSION: A high-dose of TAM is effective and safe for patients with advanced breast cancer with high HR expression. 18F-FES SUVmax values may predict the local clinical benefits of high-dose TAM . TRIAL REGISTRATION: [ClinicalTrials.gov identifier: NCT0304565].

12.
Int J Biol Sci ; 15(10): 2240-2255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592237

RESUMO

Radiation-induced bystander effect (RIBE), e.g. the biological response occurring in unirradiated cells when their neighboring cells are irradiated, is the consequence of intercellular communication between irradiated and unirradiated cells and intracellular signal transduction of these two cell populations. Although several miRNAs have been found to play an important role in RIBEs, the evidence for the regulatory effects of miRNAs on RIBEs is still limited. In this study, by using a two cell-line co-culture system, we first found that the migration of unirradiated bystander WS1 skin fibroblasts was inhibited after co-culture with irradiated HaCaT skin keratinocytes. Further study revealed that HaCaT cells exposed to α-particles and X-rays quickly showed an elevated miR-27a expression, which was essential for the induction of the bystander effect, resulting in the secretion of miR-27a-containing exosomes as a major RIBE signaling factor. Upon uptake of these exosomes, the recipient unirradiated WS1 cells displayed oxidative stress and increased miR-27a levels. Elevated levels of miR-27a that targets MMP2 in the recipient WS1 cells then led to slowed cell migration, which was dependent upon the redox status of WS1 cells. To summarize, the present study has revealed a critical role of miR-27a in every step of the induction of bystander migration inhibition of unirradiated WS1 fibroblasts co-cultured with irradiated HaCaT keratinocytes, confirming the important regulatory effects of miRNAs in RIBEs. Additionally, we provided direct evidence that RIBEs could affect wound healing.


Assuntos
Exossomos/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Cicatrização/genética , Cicatrização/fisiologia
13.
Eur J Radiol ; 109: 108-113, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30527291

RESUMO

BACKGROUND: Reactive thymic hyperplasia (RTH) is seen in children and adolescents receiving chemotherapy for various malignancies. However, it is not clear why this occurs only in some patients. The aim of this study was to identify the predictors for RTH in children and adolescents receiving chemotherapy for lymphoma and to determine the effect of RTH on prognosis. METHODS: We reviewed the medical records of 126 lymphoma patients (October 2007-October 2012). The patients were divided into two groups according to different criteria, i.e., age at initial diagnosis (2-12 years vs. 13-18 years); presence of thymic infiltration at baseline (yes vs. no); and receipt of mediastinal radiotherapy (yes vs. no). The Kaplan-Meier method and multivariate Cox regression model analysis were used to analyze predictors for RTH. Further, patients were divided into two groups according to the occurrence of RTH during follow-up, and Kaplan-Meier survival analysis was used to analyze the prognostic value of RTH. RESULTS: The 2-12-year-old group had a shorter duration from the end of therapy to RTH than the 13-18-year-old group (median: 3 months vs. 16 months) and a higher rate of RTH (97.1% vs. 60.3%, P < 0.001). The lymphoma thymic non-infiltration group had a shorter duration from the end of therapy to RTH than the lymphoma infiltration group (median: 4 months vs. 22 months), and a higher rate of RTH (88.2% vs. 57.6%, P < 0.001). The non-mediastinal radiotherapy group had higher rate of RTH than the mediastinal radiotherapy group (84.7% vs. 12.5%, P < 0.001). Low age, absence of thymic infiltration by lymphoma at baseline, and absence of mediastinal radiation were predictors for RTH by multivariate Cox regression analysis (P < 0.05). The RTH group had a lower recurrence rate than the non-RTH group (13.9% vs. 40%), and a longer duration from the end of therapy to recurrence (median: 10 months vs. 5 months, P < 0.001). CONCLUSIONS: Younger age, absence of thymic infiltration by lymphoma at baseline and absence of mediastinal radiotherapy are predictors for RTH in children and adolescents. RTH may be a positive prognostic factor.


Assuntos
Linfoma/tratamento farmacológico , Hiperplasia do Timo/mortalidade , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Estimativa de Kaplan-Meier , Linfoma/complicações , Linfoma/mortalidade , Masculino , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Estudos Retrospectivos , Hiperplasia do Timo/etiologia , Adulto Jovem
14.
Inflammation ; 41(3): 1021-1031, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29460021

RESUMO

Interaction between T cells and airway smooth muscle (ASM) cells has been identified as an important factor in the development of asthma. LIGHT (known as TNFSF14) -mediated signaling likely contributes to various inflammatory disorders and airway remodeling. The objective of this study was to investigate the roles of LIGHT-mediated pathways in the interaction between ASM cells and T cells during chronic allergic inflammation. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway allergic inflammation. The control group received PBS only. The histological features and LIGHT expressions in lungs were assessed in vivo. Furthermore, T cells and ASM cells derived from the model mice were co-cultured both in the presence and absence of anti-LIGHT Ab for 72 h. The effects of LIGHT blockade on expressions of downstream signaling molecules, proliferation, and apoptosis of ASM cells, differentiation of T cells, and inflammatory cytokines release were evaluated. We demonstrated that LIGHT blockade strikingly inhibited the mRNA and protein expressions of HVEM, c-JUN, and NFκB. Additionally, LIGHT blockade resulted in decreased proliferation and increased apoptosis of ASM cells. Moreover, depletion of LIGHT dramatically reduced the differentiation of CD4+ T cells into Th1, Th2, and Th17 cells, as well as inhibited inflammatory cytokines release including IL-13, TGF-ß, and IFN-γ, which are associated with CD4+ T cell differentiation and ASM cell proliferation. LIGHT plays an important role in the interaction between T cells and ASM cells in chronic allergic asthma. Blockade of LIGHT markedly suppressed ASM hyperplasia and inflammatory responses, which might be modulated through HVEM-NFκB or c-JUN pathways. Therefore, targeting LIGHT is a promising therapeutic strategy for airway inflammation and remodeling in chronic allergic asthma.


Assuntos
Asma/patologia , Inflamação/patologia , Miócitos de Músculo Liso/metabolismo , Sistema Respiratório/patologia , Linfócitos T/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/fisiologia , Remodelação das Vias Aéreas , Animais , Comunicação Celular , Técnicas de Cocultura , Camundongos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
15.
Exp Lung Res ; 43(8): 301-310, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29140131

RESUMO

BACKGROUND: The tumor necrosis factor superfamily member LIGHT (the official gene symbol approved by NCBI Gene Database), an inflammatory factor secreted by T cells after allergen exposure, recently discovered to play crucial roles in asthmatic airway remodeling. However, it is unclear whether LIGHT could be controlled by inhaled corticosteroids, a key component of asthma management. This study was to investigate the effects and potential mechanisms of inhaled budesonide on the expressions of LIGHT and its receptors (LTßR and HVEM) of lung tissues in ovalbumin-sensitized mice. MATERIALS AND METHODS: Thirty-three BALB/c mice were randomly divided into the control, asthma model, and budesonide treatment groups (11 in each group). Mice were sensitized and challenged by OVA to develop mouse model of chronic asthma, and treated with aerosolized budesonide before OVA challenge. Bronchoalveolar lavage fluid (BALF) and lungs were obtained after the final OVA challenge. Protein and mRNA Levels of LIGHT, LTßR, and HVEM in the lungs were investigated by immunohistochemistry, image analysis, and real-time PCR. Expressions of IL-6 and IFN-γ in BALF were measured by ELISA. RESULTS: Inhaled budesonide significantly reduced protein and mRNA levels of lung LIGHT, LTßR, and HVEM in asthmatic mice. Correspondingly, the number of eosinophils and neutrophils and IL-6 levels in BALF after budesonide treatment were found to be decreased, whereas the IFN-γ levels in BALF were increased. Moreover, the expressions of LIGHT and HVEM mRNA showed positive correlation with IL-6 levels in the treatment group. CONCLUSIONS: Inhaled budesonide can down-regulate the expressions of LIGHT, LTßR, and HVEM in the lungs of asthmatic mice, and LIGHT/LTßR/HVEM interactions may be a potentially key target for asthma treatment.


Assuntos
Corticosteroides/farmacologia , Asma/tratamento farmacológico , Fatores de Necrose Tumoral/metabolismo , Corticosteroides/administração & dosagem , Animais , Asma/metabolismo , Budesonida/administração & dosagem , Budesonida/farmacologia , Receptor beta de Linfotoxina/efeitos dos fármacos , Receptor beta de Linfotoxina/metabolismo , Camundongos , Membro 14 de Receptores do Fator de Necrose Tumoral/efeitos dos fármacos , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/efeitos dos fármacos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
16.
Int Immunopharmacol ; 49: 6-12, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28549244

RESUMO

Human LL-37 is an important class of cationic antimicrobial peptide (CAP) that is known to stimulate mast cell activation. While many studies have been conducted on LL-37, to date little is known about the functional receptors for LL-37-induced human mast cell activation, in particular in terms of the release of de novo synthesized mediators. Thus, the aim of the present study is to identify the functional receptors for LL-37-induced human mast cell activation in terms of the degranulation and release of de novo synthesized mediators and investigate the downstream signalling pathways involved in mast cell activation. Overall, our study importantly demonstrates that LL-37-induced human mast cell degranulation and release of de novo synthesized mediators function primarily through the activation of MrgX2. We furthermore show that LL-37-induced human mast cell line LAD2 cells are involved in the degranulation and release of IL-8, and that FPRL1 and P2X7 have only a partial effect on IL-8 release, and no effect on mast cell degranulation triggered by LL-37. Instead, we find that silencing the expression of MrgX2 in human mast cell significantly inhibits the LL-37-induced degranulation and release of IL-8. Overall, this effect is associated with the activation of the Gi protein, PLC/PKC/Calcium/NFAT, PI3K/Akt and MAPKs signalling pathways.


Assuntos
Catelicidinas/metabolismo , Mastócitos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Peptídeos Catiônicos Antimicrobianos , Sinalização do Cálcio , Degranulação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-8/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/genética , Receptores de Formil Peptídeo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Lipoxinas/metabolismo , Receptores de Neuropeptídeos/genética , Receptores Purinérgicos P2X7/metabolismo , Fosfolipases Tipo C/metabolismo , Regulação para Cima
17.
Integr Biol (Camb) ; 8(9): 968-75, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27515449

RESUMO

Toll-like receptors (TLRs) expressed on mast cells are essential for effective host defense against a wide variety of pathogens. Previous studies have demonstrated that both TLR2 agonists Pam3CSK4 and PGN stimulated IL-8 release in human mast cells. To determine the molecular basis for this phenomenon, we utilized human mast cell line LAD2 cells. We found that only the release of IL-8 stimulated by Pam3CSK4 was TLR2-mediated, which was confirmed by specific TLR2 shRNA. Heterotrimeric G proteins have been previously implicated in TLR signaling in macrophages and monocytes. In the current study, we showed that PamCSK4 induced the activation of MAPKs, NF-κB, PI3K-Akt and Ca(2+)-calcineurin-NFAT signaling cascades in LAD2 cells. Go proteins were required for the activation of MAPKs and NF-κB in TLR2 stimulated LAD2 cells. Therefore, the genetic depletion of Gαo proteins also led to the reduction of the release of IL-8 in LAD2 cells. Taken together, the data presented here suggest that TLR2 activation in human mast cells promotes the release of inflammatory mediators via distinct signaling pathways that partially depend on the action of Go proteins.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Mastócitos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Humanos , Transdução de Sinais/fisiologia
18.
Eur J Pharmacol ; 780: 115-21, 2016 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-27025291

RESUMO

Mast cells activated by IgE-dependent and -independent mechanisms play important roles in innate and acquired immune responses. Activation of pertussis toxin (PTX)-sensitive Gi/o proteins is the key step in mast cell degranulation and release of de novo synthesized inflammatory mediators through IgE-independent mechanism. However, the roles of Gi and Go proteins in mast cells activation have not yet been differentiated. In the current study, the functional roles of Go proteins in the activities of LAD2 cells, a human mast cell line, are identified. Knockdown of Gαo expression significantly inhibited the synthesis of IL-8 and TNF-α from substance P activated LAD2 cells but demonstrated no effect on degranulation. This effect was associated with the activation of Erk and JNK/MAPKs signaling, whereas PI3K-Akt, calcium mobilization and NFAT translocation remained unchanged. These results suggest that Gi and Go proteins differentially regulate human mast cells activities through activating distinct signaling cascades.


Assuntos
Degranulação Celular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Interleucina-8/metabolismo , Mastócitos/citologia , Mastócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mastócitos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Substância P/farmacologia
19.
Biochem Biophys Res Commun ; 470(2): 368-374, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26778002

RESUMO

The sole and endogenous anti-microbial peptide LL-37 is a significant effector molecule in the innate host defense system. Apart from its broadly direct anti-microbial activity, the peptide also activates mast cell in respect of allergic diseases and inflammation. On the other hand, mast cell can be activated by Toll-like receptors (TLRs) which are at the center of innate immunity. It was the aim of the study to illustrate the modulatory effect of TLR2 ligands peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4) on LL-37 induced LAD2 cells (a human mast cell line) activation. LL-37 induced LAD2 cells degranulation and the release of IL-8. TLR2 ligands didn't induce LAD2 cells degranulation, but triggered the release of IL-8. Incubation with PGN or Pam3CSK4 significantly suppressed LL-37-induced degranulation through inhibition of calcium mobilization from LAD2 cells. Similarly, the release of IL-8 was inhibited when LAD2 cells were co-stimulated with TLR2 ligands and LL-37. Studies with inhibitors of key enzymes involved in mast cell signaling indicated that the release of IL-8 induced by TLR2 ligands and LL-37 involved the activation of the PI3K, ERK, JNK and calcineurin signaling pathways. In contrast, p38 activation down-regulated the release of IL-8 induced by TLR2 ligands and LL-37. Taken together, these observations suggest that activation of human mast cells by LL-37 could be modified by TLR2 ligands and the function of human mast cells could be switched from allergic reactions to innate immune response.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Grânulos Citoplasmáticos/metabolismo , Imunidade Inata/imunologia , Interleucina-8/imunologia , Mastócitos/imunologia , Receptor 2 Toll-Like/imunologia , Linhagem Celular , Humanos , Fatores Imunológicos/imunologia , Mastócitos/citologia , Catelicidinas
20.
J Transl Med ; 13: 384, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26682905

RESUMO

BACKGROUND: Impaired Toll-like receptor 2 (TLR2) function has been associated with the pathogenesis of atopic dermatitis (AD). However, there are only few studies reporting on the TLR2-induced immunological responses of circulating leucocytes of AD patients. We thus investigated the expression and secretion of Th1, Th2 and Th17/22 cytokines triggered by TLR2 ligands in human peripheral blood mononuclear cells (PBMCs) from AD patients. Expression of TLR2, 1, 6 and high-affinity receptor for IgE (FcεRI) were further investigated to evaluate the outcome of immune response in AD. METHODS: Expression of TLR2, 1, 6 and FcεRI in PBMCs from AD patients and healthy individuals were measured by qPCR. Subsequent to stimulation with TLR2 ligands PGN and Pam3CSK4, expression and secretion of Th1, Th2 and Th17/22 cytokines were investigated by qPCR and ELISA. RESULTS: The levels of TLR2, 1, 6 mRNA were not altered in both groups of subjects while that of FcεRI was increased in AD patients. Subsequent to the activation by TLR2 ligands, PBMCs from AD patients significantly released less IFN-γ, IL-17F and IL-22 than those from healthy controls while no detectable level of release was observed with the other cytokines. In contrast, significantly higher levels of mRNA expression for TNF-α, IL5, IL-17A and IL-22 were observed in TLR2 activated PBMCs of AD patients than those of healthy control. CONCLUSIONS: PBMCs from AD patients are defective in the secretion of Th1 and Th17/22 cytokines in response to TLR2 ligands. The inconsistent increased expression of the mRNA for the corresponding Th1 cytokines and the Th2 cytokines IL-5 suggested that there may be alterations of downstream signaling events in the cytokine release mechanisms of PBMCs that are associated with the development of AD.


Assuntos
Citocinas/metabolismo , Dermatite Atópica/metabolismo , Monócitos/metabolismo , Receptor 2 Toll-Like/fisiologia , Estudos de Casos e Controles , Células Cultivadas , Humanos , Ligantes , Receptor 2 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...