Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629564

RESUMO

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Cobre , Lactuca , Poluentes Ambientais/análise , Solo , Catalase , Nitratos/análise , Antibacterianos , Tetraciclina/análise , Carvão Vegetal , Poluentes do Solo/análise , Clorofila/análise , Malondialdeído , Nitrogênio/análise , Prolina
2.
BMC Vet Res ; 19(1): 22, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717813

RESUMO

BACKGROUND: Canine mammary tumors (CMTs) have a poor prognosis, along with tumor recurrence and metastasis. Cell lines are vital in vitro models for CMT research. Many CMT epithelial cell lines were reported. However, canine mammary myoepithelial cells, the contractile component of the canine mammary tissue were overlooked. This study aimed at establishing such a cell line. CMT-1 cell line was obtained from a canine mammary tumor CMT-1 and characterized molecularly through qPCR, western blotting, immunochemistry and immunofluorescence. Its doubling time, cytogenetic analysis and migration rate were evaluated using growth study, karyotype analysis and wound healing assay respectively. To determine its tumorigenesis, xenograft transplantation was performed. RESULTS: CMT-1 tumor was a complex canine mammary carcinoma that stained negative to estrogen receptors (ER) and progesterone receptors (PR), but positive to human epidermal growth receptor-2 (HER2), defined as HER2-enriched subtype. In this study, a CMT-1 cell line obtained from CMT-1 tumor was immune-positive to vimentin, α-SMA, p63 and negative to E-cadherin (E-cad), indicating CMT-1 cells were myoepithelial cells. It was successfully cultured for more than 50 passages showing the same immunoreactivity to ER, PR, and HER2 as the primary canine tumor. The doubling time of CMT-1 cell line was 26.67 h. The chromosome number of CMT-1 cells ranged from 31 to 64. A potential spontaneous epithelial to mesenchymal transition (EMT) was noticed during cell cultures. Potential EMT-induced CMT-1 cells showed no significance in migration rate compared to the original CMT-1 cells. CMT-1 cells was able to grow on a 3D culture and formed grape-like, solid, and cystic mammospheres at different time period. Inoculation of CMT-1 cells induced a complex HER2-enriched mammary tumor with metastasis in mice. CONCLUSIONS: A canine cancerous HER2-enriched myoepithelial cell line was successfully established and a canine mammosphere developed from myoepithelial cells was documented in this study. We are expecting this novel cell line and its associated mammospheres could be used as a model to elucidate the role of myoepithelial cells in CMT carcinogensis in the future.


Assuntos
Doenças do Cão , Neoplasias Mamárias Animais , Animais , Cães , Camundongos , Linhagem Celular Tumoral , Doenças do Cão/patologia , Transição Epitelial-Mesenquimal , Neoplasias Mamárias Animais/metabolismo , Recidiva Local de Neoplasia/veterinária
3.
ACS Omega ; 6(1): 327-339, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458484

RESUMO

High phosphorus concentrations mainly result in environmental problems such as agricultural pollution and eutrophication, which have great negative influence on many natural water bodies. In this work, calcium lignosulfonate was employed to produce calcium-doped char at 400 and 800 °C. To compare the phosphorus adsorption behaviors of the two carbon materials, batch adsorption experiments were conducted in a phosphorus microenvironment. The factors including the initial solution pH, phosphorus concentration, and adsorbent amount were considered, and the main characteristics of calcium-doped chars before and after adsorption were assessed. The results revealed that the phosphorus removal processes fitted both the Freundlich and pseudo-second-order-kinetic models. According to the Langmuir model, the maximum adsorption capacities of the two adsorbents obtained at 400 and 800 °C toward phosphorus (50 °C) were 53.22 and 17.77 mg/g adsorbent, respectively. The former was rich in calcium carbonate (CaCO3) and hydroxyl and carboxyl groups, and it mainly served as a precipitant and a chelating agent, while the latter with a high surface area was dominant in P adsorption.

4.
ACS Appl Mater Interfaces ; 8(50): 34405-34413, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27936541

RESUMO

Birnessite is widely used as an excellent adsorbent for heavy metal ions and as active electrode materials for supercapacitors. The occurrence of redox reactions of manganese oxides is usually accompanied by the intercalation-deintercalation of cations during the charge-discharge processes of supercapacitors. In this study, based on the charge-discharge principle of the supercapacitor and excellent adsorption properties of birnessite, a birnessite-based electrode was used to remove Cd2+ from aqueous solutions. The Cd2+ removal mechanism and the influences of birnessite loading and pH on the removal performance were investigated. The results showed that Cd2+ was adsorbed on the surfaces and interlayers of birnessite, and the maximum electrosorption capacity of birnessite for Cd2+ was about 900.7 mg g-1 (8.01 mmol g-1), which was significantly higher than the adsorption isotherm capacity of birnessite (125.8 mg g-1). The electrosorption specific capacity of birnessite for Cd2+ increased with an increase in initial Cd2+ concentration and decreased with an increase in the loading of active birnessite. In the pH range of 3.0-6.0, the electrosorption capacity increased at first with an increase in pH and then reached equilibrium above pH 4.0. This work provides a new method for the highly efficient adsorption of Cd2+ from polluted wastewater.

5.
J Colloid Interface Sci ; 482: 183-192, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27501042

RESUMO

Manganese oxides are environmentally benign supercapacitor electrode materials and, in particular, birnessite-type structure shows very promising electrochemical performance. In this work, nanostructured birnessite was facilely prepared by adding dropwise NH2OH·HCl to KMnO4 solution under ambient temperature and pressure. In order to fully exploit the potential of birnessite-type manganese oxide electrode materials, the effects of specific surface area, pore size, content of K(+), and manganese average oxidation state (Mn AOS) on their electrochemical performance were studied. The results showed that with the increase of NH2OH·HCl, the Mn AOS decreased and the corresponding pore sizes and specific surface area of birnessite increased. The synthesized nanostructured birnessite showed the highest specific capacitance of 245Fg(-1) at a current density of 0.1Ag(-1) within a potential range of 0-0.9V, and excellent cycle stability with a capacitance retention rate of 92% after 3000 cycles at a current density of 1.0Ag(-1). The present work implies that specific capacitance is mainly affected by specific surface area and pore volume, and provides a new method for the facile preparation of birnessite-type manganese oxide with excellent capacitive performance.

6.
Geochem Trans ; 16(1): 16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26435697

RESUMO

BACKGROUND: In soils and sediments, manganese oxides and oxygen usually participate in the oxidation of ferrous ions. There is limited information concerning the interaction process and mechanisms of ferrous ions and manganese oxides. The influence of air (oxygen) on reaction process and kinetics has been seldom studied. Because redox reactions usually occur in open systems, the participation of air needs to be further investigated. RESULTS: To simulate this process, hexagonal birnessite was prepared and used to oxidize ferrous ions in anoxic and aerobic aqueous systems. The influence of pH, concentration, temperature, and presence of air (oxygen) on the redox rate was studied. The redox reaction of birnessite and ferrous ions was accompanied by the release of Mn2+ and K+ ions, a significant decrease in Fe2+ concentration, and the formation of mixed lepidocrocite and goethite during the initial stage. Lepidocrocite did not completely transform into goethite under anoxic condition with pH about 5.5 within 30 days. Fe2+ exhibited much higher catalytic activity than Mn2+ during the transformation from amorphous Fe(III)-hydroxide to lepidocrocite and goethite under anoxic conditions. The release rates of Mn2+ were compared to estimate the redox rates of birnessite and Fe2+ under different conditions. CONCLUSIONS: Redox rate was found to be controlled by chemical reaction, and increased with increasing Fe2+ concentration, pH, and temperature. The formation of ferric (hydr)oxides precipitate inhibited the further reduction of birnessite. The presence of air accelerated the oxidation of Fe2+ to ferric oxides and facilitated the chemical stability of birnessite, which was not completely reduced and dissolved after 18 days. As for the oxidation of aqueous ferrous ions by oxygen in air, low and high pHs facilitated the formation of goethite and lepidocrocite, respectively. The experimental results illustrated the single and combined effects of manganese oxide and air on the transformation of Fe2+ to ferric oxides. Graphical abstract:Lepidocrocite and goethite were formed during the interaction of ferrous ion and birnessite at pH 4-7. Redox rate was controlled by the adsorption of Fe2+ on the surface of birnessite. The presence of air (oxygen) accelerated the oxidation of Fe2+ to ferric oxides and facilitated the chemical stability of birnessite.

7.
J Hazard Mater ; 290: 106-16, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746570

RESUMO

Todorokite, formed from Mn(II) in supergene environments, can affect the transformation and migration of dissolvable sulfides in soils and water. In this work, todorokite was synthesized with different degrees of crystallinity, and the redox mechanism of dissolvable sulfide and todorokite was studied in both closed and open aqueous systems. The influences of pH, temperature, crystallinity, the amount of manganese oxides, and oxygen gas on S(2-) oxidation process were investigated. It is found that S(2-) was oxidized to S(0), SO3(2-), S2O3(2-) and SO4(2-), and about 90% of S(2-) was converted into S(0) in closed systems. The participation of oxygen facilitated the further oxidation of S(0) to S2O3(2-). S(0) and S2O3(2-) were formed with the conversion rates of S(2-) about 45.3% and 38.4% after 1h of reaction, respectively, and the conversion rate for S2O3(2-) increased as reaction prolonged for a longer period. In addition, todorokite was reduced to Mn(OH)2 in the presence of nitrogen gas, and its chemical stability increased when oxygen gas was admitted into the reaction system during the process. The oxidation rate of dissolvable sulfide followed a pseudo-first-order kinetic law in the initial stage (within 10 min), and the initial oxidation rate constant of S(2-) increased with elevating temperature, increasing the quantity and decreasing crystallinity of todorokite. The initial oxidation rate of dissolvable sulfide decreased with continuous feeding of O2 into the test solution, possibly due to a decrease in active Mn(III) content in todorokite. The present work demonstrates the redox behaviors and kinetics of dissolvable sulfide and todorokite in aquatic environments.


Assuntos
Compostos de Manganês/síntese química , Óxidos/síntese química , Sulfetos/química , Indicadores e Reagentes , Cinética , Manganês/química , Compostos de Manganês/química , Oxirredução , Óxidos/química , Espectroscopia Fotoeletrônica , Solubilidade , Enxofre/química , Difração de Raios X
8.
Biosens Bioelectron ; 41: 168-71, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22959013

RESUMO

In this paper, we reported a convenient fluorescence method for the detection of genetically modified organisms (GMOs). As it is known that the cauliflower mosaic virus (CaMV) 35S promoter is widely used in most transgenic plants (Schnurr and Guerra, 2000), we thus design a simple method based on the detection of a section target DNA (DNA-T) from the transgene CaMV 35S promoter. In this method, the full-length guanine-rich single-strand sequences were split into fragments (Probe 1 and 2) and each part of the fragment possesses two GGG repeats. In the presence of K(+) ion and berberine, if a complementary target DNA of the CaMV 35S promoter was introduced to hybridize with Probe 1 and 2, a G-quadruplex-berberine complex was thus formed and generated a strong fluorescence signal. The generation of fluorescence signal indicates the presence of CaMV 35S promoter. This method is able to identify and quantify Genetically Modified Organisms (GMOs), and it shows wide linear ranges from 5.0×10(-9) to 9.0×10(-7) mol/L with a detection limit of 2.0×10(-9) mol/L.


Assuntos
Técnicas Biossensoriais/instrumentação , Caulimovirus/genética , DNA de Plantas/genética , DNA Viral/genética , Plantas Geneticamente Modificadas/classificação , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Espectrometria de Fluorescência/instrumentação , DNA de Plantas/análise , DNA Viral/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transgenes/genética
9.
Anal Chim Acta ; 684(1-2): 121-5, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21167993

RESUMO

A highly sensitive and selective electrochemiluminescent (ECL) biosensor for the determination of adenosine was developed. Single DNA (capture DNA) was immobilized on the gold electrode through Au-thiol interaction at first. Another DNA modified with tris(2,2'-bipyridyl) ruthenium(II)-doped silica nanoparticles (Ru-SNPs) that contained adenosine aptamer was then modified on the electrode surface through hybridizing with the capture DNA. In the presence of adenosine, adenosine-aptamer complex is produced rather than aptamer-DNA duplex, resulting with the dissociation of Ru-SNPs-labeled aptamer from the electrode surface and the decrease in the ECL intensity. The decrease of ECL intensity has a direct relationship with the logarithm of adenosine concentration in the range of 1.0×10(-10) to 5.0×10(-6)molL(-1). The detection limit of the proposed method is 3.0×10(-11)molL(-1). The existence of guanosine, cytidine and uridine has little interference with adenosine detection, demonstrating that the developed biosensor owns a high selectivity to adenosine. In addition, the developed biosensor also demonstrates very good reusability, as after being reused for 30 times, its ECL signal still keeps 91% of its original state.


Assuntos
Adenosina/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Nanopartículas/química , Compostos Organometálicos/química , Limite de Detecção , Medições Luminescentes/métodos , Nanopartículas/ultraestrutura , Sensibilidade e Especificidade , Dióxido de Silício/química
10.
Int J Radiat Oncol Biol Phys ; 62(5): 1517-24, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16029814

RESUMO

PURPOSE: The on-board megavoltage (MV) computed tomography (CT) capabilities of a TomoTherapy Hi*ART unit were used to obtain daily MVCT images of prostate cancer patients. For patient alignment the daily MVCT image needs to be registered with the planning CT image to calculate couch shifts. Three manual techniques of registering the MVCT images with the planning kilovoltage (kV) CT images were evaluated. The techniques are based on visual alignment of (1) fiducial prostate markers, (2) CT anatomy, and (3) kVCT contours. METHODS AND MATERIALS: One hundred and twelve alignments from 3 patients were available for analysis. The radiation therapists visually registered the MVCT images with the planning kVCT images based on fiducial markers for actual patient alignment. Retrospectively, the therapists registered each image set using anatomy and contour-based techniques. In addition to the therapists, a physician retrospectively registered each image set based on each of the three techniques. For each MVCT to kVCT image pair a reference alignment was computed from the center-of-mass (COM) of the three fiducial markers. All registration results were compared with these reference alignments. The physician's image registrations were compared with the radiation therapists' registrations to assess the user variability of the different techniques. RESULTS: The marker-based registration results agree best with the reference alignments, while the contour-based registrations show the least degree of agreement. Using anatomy and contour-based registrations, the radiation therapist's alignments differed by > or = 3 mm from the reference alignments in 24%, 33%, and 3% and 55%, 48%, and 21% of all registrations in the anterior-posterior, superior-inferior, and lateral directions, respectively. The respective values for the marker-based alignments were 3%, 6%, and 3%. The physician's registrations showed the same general trend. The marker-based registrations showed the least amount of inter-user variability while the contour-based ones showed the most. CONCLUSION: The use of fiducial markers for MVCT image guidance is advantageous to reduce the inter-user variability of the image registration. If fiducial markers are not used, anatomy-based registrations outperform contour-based registrations in terms of (1) agreement with a reference alignment and (2) inter-user variability.


Assuntos
Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Calibragem , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Próteses e Implantes , Radioterapia (Especialidade) , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA