Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(10): 217, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782334

RESUMO

KEY MESSAGE: Major QTL for grain zinc and iron concentrations were identified on the long arm of chromosomes 2D and 6D. Gene-based KASP markers were developed for putative candidate genes TaIPK1-2D and TaNAS10-6D. Micronutrient malnutrition is one of the most common public health problems in the world. Biofortification, the most attractive and sustainable solution to surmount malnutrition requires the development of micronutrient enriched new crop cultivars. In this study, two recombinant inbred line (RIL) populations, ZM175/XY60 and ZM175/LX987, were used to identify QTL for grain zinc concentration (GZnC), grain iron concentration (GFeC) and thousand grain weight (TGW). Eight QTL for GZnC, six QTL for GFeC and five QTL for TGW were detected. Three QTL on chromosomes 2DL and 4BS and chromosome 6A showed pleiotropic effects on all three traits. The 4BS and 6A QTL also increased plant height and might be Rht-B1a and Rht25a, respectively. The 2DL locus within a suppressed recombination region was identified in both RIL populations and the favorable allele simultaneously increasing GZnC, GFeC and TGW was contributed by XY60 and LX987. A QTL on chromosome 6DL associated only with GZnC was detected in ZM175/XY60 and was validated in JD8/AK58 RILs using kompetitive allele-specific PCR (KASP) marker K_AX-110119937. Both the 2DL and 6DL QTL were new loci for GZnC. Based on gene annotations, sequence variations and expression profiles, the phytic acid biosynthesis gene TaIPK1-2D and nicotianamine synthase gene TaNAS10-6D were predicted as candidate genes. Their gene-based KASP markers were developed and validated in a cultivar panel of 343 wheat accessions. This study investigated the genetic basis of GZnC and GFeC and provided valuable candidate genes and markers for breeding Zn- and Fe-enriched wheat.


Assuntos
Genes de Plantas , Ferro , Triticum , Zinco , Grão Comestível/química , Grão Comestível/genética , Genes de Plantas/genética , Ferro/análise , Desnutrição/dietoterapia , Micronutrientes/análise , Melhoramento Vegetal , Oligoelementos/análise , Triticum/química , Triticum/genética , Zinco/análise , Humanos
2.
Theor Appl Genet ; 136(11): 232, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875655

RESUMO

KEY MESSAGE: Four stable QTL for adult-plant resistance (APR) to powdery mildew were identified on chromosome arms 1DL, 2BS, 2DL, and 6BL in the widely grown Chinese wheat cultivar Bainong 64. These QTL had no effect on response to stripe rust or leaf rust. Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating fungal disease. Seedlings of Chinese wheat Bainong 64 are susceptible to Bgt, but adult plants have maintained resistance since it was released in 1996. A population of 171 recombinant inbred lines (RILs) developed from cross Jingshuang 16/Bainong 64 (JS16/BN64) was used to dissect genetic components of powdery mildew resistance. A genetic map comprising 5383 polymorphic markers was constructed using the 15 K SNP chip and kompetitive allele-specific PCR (KASP) markers. Composite interval mapping identified four stable QTL with favorable alleles all from BN64 on chromosome arms 1DL, 2BS, 2DL, and 6BL in at least four environments. They accounted for 8.3%, 13.8%, 14.4%, and 9.0% of the total phenotypic variation explained (PVE) in maximum, respectively. QPmjbr.caas-1DL, situated about 22 Mb from centromere, is probably a new QTL. QPmjbr.caas-2DL located near the end of arm 2DL and explained the largest PVE. Using genetic maps populated with KASP markers, QPmjbr.caas-2BS and QPmjbr.caas-6BL were fine mapped to a 1.8 cM genetic intervals spanning 13.6 Mb (76.0-89.6 Mb) and 1.7 cM and 4.9 Mb (659.9-664.8 Mb), respectively. The four QTL independent of stripe rust and leaf rust resistance were validated for powdery mildew resistance in another RIL population related to BN64 and a cultivar panel using representative KASP markers. Since BN64 has been a leading cultivar and an important breeding parent in China, the QTL and markers reported in this study will be useful for marker-assisted selection of APR.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Mapeamento Cromossômico , Fenótipo , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal
3.
Plant Dis ; 107(10): 3230-3237, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37018212

RESUMO

Powdery mildew caused by Blumeria graminis f. sp. tritici is a threat to wheat production in China. Mapping quantitative trait loci (QTL) for resistance to powdery mildew and developing breeder-friendly markers are important initial steps in breeding resistant cultivars. An all-stage resistance gene and several QTL were identified using a population of 254 recombinant inbred lines developed from a Jingdong 8/Aikang 58 cross. The population was evaluated for powdery mildew resistance across six field environments over three consecutive growing seasons utilizing two different mixtures of B. graminis f. sp. tritici isolates, named #Bgt-HB and #Bgt-BJ. Using genotypic data obtained from the Wheat TraitBreed 50K single-nucleotide polymorphism array, seven stable QTL were identified on chromosome arms 1DL, 2AL, 2DS, 4DL, 5AL, 6BL.1, and 6BL.2. The QTL on 2AL conferred all-stage resistance to B. graminis f. sp. tritici race E20 in greenhouse tests and explained up to 52% of the phenotypic variance in field trials but was resistant only against #Bgt-HB. The gene involved in this QTL was predicted to be Pm4a based on genome location and gene sequence. QPmja.caas-1DL, QPmja.caas-4DL, and QPmja.caas-6BL.1 were identified as potentially new QTL for powdery mildew resistance. QPmja.caas-2DS and QPmja.caas-6BL.1 were effective against both B. graminis f. sp. tritici mixtures, indicating their probable broad-spectrum resistance. A Kompetitive allele-specific PCR marker closely linked to QPmja.caas-2DS was developed and validated in a panel of 286 wheat cultivars. Because both Jingdong 8 and Aikang 58 have been leading cultivars and breeding parents, the QTL and marker reported represent valuable resources for wheat researchers and breeders.


Assuntos
Resistência à Doença , Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Erysiphe/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética
4.
Foods ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673453

RESUMO

The processing quality of wheat is affected by seed storage substances, such as protein and starch. High-molecular-weight glutenin subunits (HMW-GSs) are the major components of wheat seed storage proteins (SSPs); they are also key determinators of wheat end-use quality. However, the effects of HMW-GSs absence on the expression of other storage substances and the regulation mechanism of HMW-GSs are still limited. Previously, a wheat transgenic line LH-11 with complete deletions of HMW-GSs was obtained through introducing an exogenous gene Glu-1Ebx to the wild-type cultivar Bobwhite by transgenic approach. In this study, comparative seed transcriptomics and proteomics of transgenic and non-transgenic lines at different seed developmental stages were carried out to explore the changes in genes and proteins and the underlying regulatory mechanism. Results revealed that a number of genes, including genes related to SSPs, carbohydrates metabolism, amino acids metabolism, transcription, translation, and protein process were differentially enriched. Seed storage proteins displayed differential expression patterns between the transgenic and non-transgenic line, a major rise in the expression levels of gliadins were observed at 21 and 28 days post anthesis (DPA) in the transgenic line. Changes in expressions of low-molecular-weight glutenins (LMW-GSs), avenin-like proteins (ALPs), lipid transfer proteins (LTPs), and protease inhibitors (PIs) were also observed. In addition, genes related to carbohydrate metabolism were differentially expressed, which probably leads to a difference in starch component and deposition. A list of gene categories participating in the accumulation of SSPs was proposed according to the transcriptome and proteome data. Six genes from the MYB and eight genes from the NAC transcription families are likely important regulators of HMW-GSs accumulation. This study will provide data support for understanding the regulatory network of wheat storage substances. The screened candidate genes can lay a foundation for further research on the regulation mechanism of HMW-GSs.

5.
Front Plant Sci ; 13: 1006409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110359

RESUMO

Cytokinin is an important endogenous hormone in plants performing a wide spectrum of biological roles. The type-A response regulators (RRAs) are primary cytokinin response genes, which are important components of the cytokinin signaling pathway and are involved in the regulation of plant growth and development. By analysis of the whole genome sequence of wheat, we identified 20 genes encoding RRAs which were clustered into eight homologous groups. The gene structure, conserved motifs, chromosomal location, and cis-acting regulatory elements of the TaRRAs were analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that the expression levels of most of the TaRRAs increased rapidly on exogenous cytokinin application. Moreover, the TaRRA family members displayed different expression profiles under the stress treatments of drought, salt, cold, and heat. This study provides valuable insights into the RRA gene family in wheat and promotes the potential application of these genes in wheat genetic improvement.

6.
BMC Plant Biol ; 22(1): 333, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820806

RESUMO

BACKGROUND: Low temperature is a crucial stress factor of wheat (Triticum aestivum L.) and adversely impacts on plant growth and grain yield. Multi-million tons of grain production are lost annually because crops lack the resistance to survive in winter. Particularlly, winter wheat yields was severely damaged under extreme cold conditions. However, studies about the transcriptional and metabolic mechanisms underlying cold stresses in wheat are limited so far. RESULTS: In this study, 14,466 differentially expressed genes (DEGs) were obtained between wild-type and cold-sensitive mutants, of which 5278 DEGs were acquired after cold treatment. 88 differential accumulated metabolites (DAMs) were detected, including P-coumaroyl putrescine of alkaloids, D-proline betaine of mino acids and derivativ, Chlorogenic acid of the Phenolic acids. The comprehensive analysis of metabolomics and transcriptome showed that the cold resistance of wheat was closely related to 13 metabolites and 14 key enzymes in the flavonol biosynthesis pathway. The 7 enhanced energy metabolites and 8 up-regulation key enzymes were also compactly involved in the sucrose and amino acid biosynthesis pathway. Moreover, quantitative real-time PCR (qRT-PCR) revealed that twelve key genes were differentially expressed under cold, indicating that candidate genes POD, Tacr7, UGTs, and GSTU6 which were related to cold resistance of wheat. CONCLUSIONS: In this study, we obtained the differentially expressed genes and differential accumulated metabolites in wheat under cold stress. Using the DEGs and DAMs, we plotted regulatory pathway maps of the flavonol biosynthesis pathway, sucrose and amino acid biosynthesis pathway related to cold resistance of wheat. It was found that candidate genes POD, Tacr7, UGTs and GSTU6 are related to cold resistance of wheat. This study provided valuable molecular information and new genetic engineering clues for the further study on plant resistance to cold stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Triticum , Aminoácidos/metabolismo , Grão Comestível/metabolismo , Flavonóis/metabolismo , Sacarose/metabolismo , Triticum/genética , Triticum/metabolismo
7.
Front Plant Sci ; 13: 840614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371186

RESUMO

Biofortification is a sustainable strategy to alleviate micronutrient deficiency in humans. It is necessary to improve grain zinc (GZnC) and iron concentrations (GFeC) in wheat based on genetic knowledge. However, the precise dissection of the genetic architecture underlying GZnC and GFeC remains challenging. In this study, high-resolution genome-wide association studies were conducted for GZnC and GFeC by three different models using 166 wheat cultivars and 373,106 polymorphic markers from the wheat 660K and 90K single nucleotide polymorphism (SNP) arrays. Totally, 25 and 16 stable loci were detected for GZnC and GFeC, respectively. Among them, 17 loci for GZnC and 8 for GFeC are likely to be new quantitative trait locus/loci (QTL). Based on gene annotations and expression profiles, 28 promising candidate genes were identified for Zn/Fe uptake (8), transport (11), storage (3), and regulations (6). Of them, 11 genes were putative wheat orthologs of known Arabidopsis and rice genes related to Zn/Fe homeostasis. A brief model, such as genes related to Zn/Fe homeostasis from root uptake, xylem transport to the final seed storage was proposed in wheat. Kompetitive allele-specific PCR (KASP) markers were successfully developed for two major QTL of GZnC on chromosome arms 3AL and 7AL, respectively, which were independent of thousand kernel weight and plant height. The 3AL QTL was further validated in a bi-parental population under multi-environments. A wheat multidrug and toxic compound extrusion (MATE) transporter TraesCS3A01G499300, the ortholog of rice gene OsPEZ2, was identified as a potential candidate gene. This study has advanced our knowledge of the genetic basis underlying GZnC and GFeC in wheat and provides valuable markers and candidate genes for wheat biofortification.

8.
Front Nutr ; 8: 680391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179060

RESUMO

Deficiency of micronutrient elements, such as zinc (Zn) and iron (Fe), is called "hidden hunger," and bio-fortification is the most effective way to overcome the problem. In this study, a high-density Affymetrix 50K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for grain Zn (GZn) and grain Fe (GFe) concentrations in 254 recombinant inbred lines (RILs) from a cross Jingdong 8/Bainong AK58 in nine environments. There was a wide range of variation in GZn and GFe concentrations among the RILs, with the largest effect contributed by the line × environment interaction, followed by line and environmental effects. The broad sense heritabilities of GZn and GFe were 0.36 ± 0.03 and 0.39 ± 0.03, respectively. Seven QTL for GZn on chromosomes 1DS, 2AS, 3BS, 4DS, 6AS, 6DL, and 7BL accounted for 2.2-25.1% of the phenotypic variances, and four QTL for GFe on chromosomes 3BL, 4DS, 6AS, and 7BL explained 2.3-30.4% of the phenotypic variances. QTL on chromosomes 4DS, 6AS, and 7BL might have pleiotropic effects on both GZn and GFe that were validated on a germplasm panel. Closely linked SNP markers were converted to high-throughput KASP markers, providing valuable tools for selection of improved Zn and Fe bio-fortification in breeding.

9.
Sci Rep ; 11(1): 9978, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976249

RESUMO

The regulation of wheat protein quality is a highly complex biological process involving multiple metabolic pathways. To reveal new insights into the regulatory pathways of wheat glutenin synthesis, we used the grain-filling period wheat grains of the near-isogenic lines NIL-723 and NIL-1010, which have large differences in quality, to perform a combined transcriptome and proteome analysis. Compared with NIL-1010, NIL-723 had 1287 transcripts and 355 proteins with significantly different abundances. Certain key significantly enriched pathway were identified, and wheat quality was associated with alanine, aspartate and glutamate metabolism, nitrogen metabolism and alpha-linolenic acid metabolism. Differentially expressed proteins (DEPs) or Differentially expressed genes (DEGs) in amino acid synthesis pathways were upregulated primarily in the glycine (Gly), methionine (Met), threonine (Thr), glutamic acid (Glu), proline (proC), cysteine (Cys), and arginine (Arg) synthesis and downregulated in the tryptophan (trpE), leucine (leuC), citrulline (argE), and ornithine (argE) synthesis. Furthermore, to elucidate changes in glutenin in the grain synthesis pathway, we plotted a regulatory pathway map and found that DEGs and DEPs in ribosomes (RPL5) and the ER (HSPA5, HYOU1, PDIA3, PDIA1, Sec24, and Sec31) may play key roles in regulating glutenin synthesis. The transcriptional validation of some of the differentially expressed proteins through real-time quantitative PCR analysis further validated the transcriptome and proteomic results.


Assuntos
Pão , Glutens/biossíntese , Proteoma , Transcriptoma , Triticum/metabolismo , Aminoácidos/biossíntese , Triticum/genética
10.
Plants (Basel) ; 10(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916985

RESUMO

Genetic dissection kernel weight-related traits is of great significance for improving wheat yield potential. As one of the three major yield components of wheat, thousand kernel weight (TKW) was mainly affected by grain length (GL) and grain width (GW). To uncover the key loci for these traits, we carried out a quantitative trait loci (QTL) analysis of an F6 recombinant inbred lines (RILs) population derived from a cross of Henong 5290 (small grain) and 06Dn23 (big grain) with a 50 K single nucleotide polymorphism (SNP) array. A total of 17 stable and big effect QTL, including 5 for TKW, 8 for GL and 4 for GW, were detected on the chromosomes 1B, 2A, 2B, 2D, 4B, 5A, 6A and 6D, respectively. Among these, there were two co-located loci for three traits that were mapped on the chromosome 4BS and 6AL. The QTL on 6AL was the most stable locus and explained 15.4-24.8%, 4.1-8.8% and 15.7-24.4% of TKW, GW and GL variance, respectively. In addition, two more major QTL of GL were located on chromosome arm 2BL and 2DL, accounting for 9.7-17.8% and 13.6-19.8% of phenotypic variance, respectively. In this study, we found one novel co-located QTL associated with GL and TKW in 2DL, QGl.haaf-2DL.2/QTkw.haaf-2DL.2, which could explain 13.6-19.8% and 9.8-10.7% phenotypic variance, respectively. Genetic regions and linked markers of these stable QTL will help to further refine mapping of the corresponding loci and marker-assisted selection (MAS) breeding for wheat grain yield potential improvement.

11.
Theor Appl Genet ; 128(3): 549-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25613742

RESUMO

KEY MESSAGE: Two new co-located resistance loci, QLr.cim - 1AS/QYr.cim - 1AS and QLr.cim - 7BL/YrSuj , in combination with Lr46 / Yr29 and Lr67/Yr46 , and a new leaf rust resistance quantitative trait loci, conferred high resistance to rusts in adult plant stage. The tall Indian bread wheat cultivar Sujata displays high and low infection types to leaf rust and stripe rust, respectively, at the seedling stage in greenhouse tests. It was also highly resistant to both rusts at adult plant stage in field trials in Mexico. The genetic basis of this resistance was investigated in a population of 148 F5 recombinant inbred lines (RILs) derived from the cross Avocet × Sujata. The parents and RIL population were characterized in field trials for resistance to leaf rust during 2011 at El Batán, and 2012 and 2013 at Ciudad Obregón, Mexico, and for stripe rust during 2011 and 2012 at Toluca, Mexico; they were also characterized three times for stripe rust at seedling stage in the greenhouse. The RILs were genotyped with diversity arrays technology and simple sequence repeat markers. The final genetic map was constructed with 673 polymorphic markers. Inclusive composite interval mapping analysis detected two new significant co-located resistance loci, QLr.cim-1AS/QYr.cim-1AS and QLr.cim-7BL/YrSuj, on chromosomes 1AS and 7BL, respectively. The chromosomal position of QLr.cim-7BL overlapped with the seedling stripe rust resistance gene, temporarily designated as YrSuj. Two previously reported pleiotropic adult plant resistance genes, Lr46/Yr29 and Lr67/Yr46, and a new leaf rust resistance quantitative trait loci derived from Avocet were also mapped in the population. The two new co-located resistance loci are expected to contribute to breeding durable rust resistance in wheat. Closely linked molecular markers can be used to transfer all four resistance loci simultaneously to modern wheat varieties.


Assuntos
Basidiomycota , Resistência à Doença/genética , Locos de Características Quantitativas , Triticum/genética , Cruzamento , Mapeamento Cromossômico , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Triticum/classificação , Triticum/microbiologia
12.
Theor Appl Genet ; 122(5): 971-87, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21161501

RESUMO

One of the key targets of breeding programs in bread wheat is to improve the end-use quality. The relationships between quantities of protein fractions and dough rheological characters have been well established, but there is little information on the genetic control of quantities of protein fractions. Two hundred and forty F(6) recombinant inbred lines derived from a cross between two Chinese wheat cultivars, PH82-2 and Neixiang 188, were sown at Jiaozuo in Henan province in the 2005-2006 and 2006-2007 cropping seasons, and inclusive composite interval mapping was used to dissect main effect quantitative trait loci (M-QTLs) and digenic epistatic QTLs (E-QTLs) for quantities of protein fractions. A total of 55 M-QTLs and 77 pairs of E-QTLs affecting the quantities of protein fractions including GLU-A1 (QGA1), GLU-B1 (QGB1), GLU-D1 (QGD1), HMW-GS (QHMW), GLU-A3 (QGA3), GLU-B3 (QGB3), LMW-GS (QLMW), glutenin (QGLU) and the ratio of the quantity of glutenin to those of gliadin were identified, with M-QTLs contributing 39.3-95.6% of the phenotypic variance explained (PVE), and E-QTLs accounting for 1.4-33.5% of the PVE. Among the M-QTLs, 33 were consistent in two seasons and in the mean value of two seasons with similar effects in both magnitude and direction, including major genes on HMW and LMW glutenin loci linked to Sec1 and Glu-B1c, Glu-D1d, Glu-A3a, and grain hardness locus Ha, indicating that these genes were the most important determinants of gluten strength, and they might have significant effects on dough properties not only through effects on allelic composition, but also by influencing quantities of protein fractions. The effects of E-QTLs were more influenced by environments, compared with those of M-QTLs, with only two pairs of E-QTLs consistent in two seasons and in the mean value of two seasons. The M-QTLs were detected in 12 marker intervals, all of which involved E-QTLs on quantities of protein fractions, whereas only 40 of 77 pairs of E-QTLs involved intervals in which M-QTLs were detected. The results indicated that besides main effects, epistatic effects were also important factors in determining quantities of protein fractions in wheat.


Assuntos
Genoma de Planta , Glutens/análise , Proteínas de Plantas/química , Locos de Características Quantitativas , Triticum/genética , Alelos , Análise de Variância , Cruzamento , Mapeamento Cromossômico , Epistasia Genética , Loci Gênicos , Fenótipo , Proteínas de Plantas/genética , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...