Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 447: 138940, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484545

RESUMO

The study aimed to investigate the allergenicity change in casein treated with dielectric barrier discharge (DBD) plasma during in vitro simulated digestion, focusing on the immunoglobulin E (IgE) linear epitopes and utilizing a sensitized-cell model. Results indicated that prior treatment with DBD plasma treatment (4 min) before simulated digestion led to a 10.5% reduction in the IgE-binding capacity of casein digestion products. Moreover, the release of biologically active substances induced from KU812 cells, including ß-HEX release rate, human histamine, IL-4, IL-6, and TNF-α, decreased by 2.1, 28.1, 20.6, 11.6, and 17.3%, respectively. Through a combined analysis of LC-MS/MS and immunoinformatics tools, it was revealed that DBD plasma treatment promoted the degradation of the IgE linear epitopes of casein during digestion, particularly those located in the α-helix region of αs1-CN and αs2-CN. These findings suggest that DBD plasma treatment prior to digestion may alleviate casein allergic reactions.


Assuntos
Imunoglobulina E , Hipersensibilidade a Leite , Humanos , Epitopos , Imunoglobulina E/metabolismo , Alérgenos/química , Caseínas/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Digestão
2.
Front Nutr ; 9: 1048632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407532

RESUMO

Fermented wine refers to alcoholic beverages with complex flavor substances directly produced by raw materials (fruit or rice) through microbial fermentation (yeast and bacteria). Its production steps usually include saccharification, fermentation, filtration, sterilization, aging, etc., which is a complicated and time-consuming process. Pulsed electric field (PEF) is a promising non-thermal food processing technology. Researchers have made tremendous progress in the potential application of PEF in the fermented wine industry over the past few years. The objective of this paper is to systematically review the achievements of PEF technology applied to the winemaking and aging process of fermented wine. Research on the application of PEF in fermented wine suggests that PEF treatment has the following advantages: (1) shortening the maceration time of brewing materials; (2) promoting the extraction of main functional components; (3) enhancing the color of fermented wine; (4) inactivating spoilage microorganisms; and (5) accelerating the formation of aroma substances. These are mainly related to PEF-induced electroporation of biomembranes, changes in molecular structure and the occurrence of chemical reactions. In addition, the key points of PEF treatments for fermented wine are discussed and some negative impacts and research directions are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA