Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(2): 1124-1135, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181302

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that mainly causes diarrhea and death in suckling piglets and also has the potential for cross-species transmission, threatening public health. However, there is still no effective vaccine or drug to prevent PDCoV infection. In order to accelerate the development of antiviral drugs, we established a high-throughput screening platform using a novel genome editing technology called transformation-associated recombination cloning in yeast. The recombinant PDCoV and PDCoV reporter virus expressing enhanced green fluorescent protein were both rapidly rescued with stable genealogical characteristics during passage. Further study demonstrated that the reporter virus can be used for high-throughput screening of antiviral drugs with a Z-factor of 0.821-0.826. Then, a medicine food homology compound library was applied, and we found that three compounds were potential antiviral reagents. In summary, we have established a fast and efficient reverse genetic system of PDCoV, providing a powerful platform for the research of antiviral drugs.


Assuntos
Proteínas de Fluorescência Verde , Saccharomyces cerevisiae , Doenças dos Suínos , Suínos , Animais , Saccharomyces cerevisiae/genética , Antivirais/farmacologia , Recombinação Genética , Clonagem Molecular
2.
Heliyon ; 10(2): e24292, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293360

RESUMO

Background: Early screening of prostate cancer (PCa) is pivotal but challenging in the clinical scenario due to the phenomena of false positivity or false negativity of some serological evaluations, e.g. PSA testing. Decline of serum Zn2+ levels in PCa patients reportedly plays a crucial role in early screening of PCa. Accordingly, we combined 4 indices comprising the serum levels of total PSA (tPSA), free PSA (fPSA), Zn2+ and demographic information (especially age) in order to ameliorate the efficacies of PCa screening with support vector machine (SVM) algorithms. Methods: A total of 858 male patients with prostate disorders and 345 healthy male controls were enrolled. Patients' data included 4 variables and serum Zn2+ was quantified via a self-invented Zn2+ responsive AIE-based fluorescent probe as previously published. tPSA and fPSA were routinely determined by a chemiluminescent method. Mathematical simulations were conducted to establish a SVM model for the combined diagnostics with the four variables. Moreover, ROC and its characteristic AUC were also employed to evaluate the classification efficacy of the model. Sigmoid function was utilized to estimate corresponding probabilities of classifying the clinical subjects as per 5 grades, which were incorporated into our established prostate index (PI) stratification system. Results: In SVM model, the mean AUC of the ROC with the quartet of variables was approximately 84% for PCa diagnosis, whereas the mean AUC of the ROCs with tPSA, fPSA, [Zn2+] or age alone was 64%, 62%, 55% and 59%, respectively. We further established an integrated prostate index (PI) stratification system with 5 grades and a software package to support clinicians in predicting PCa, with the accuracy of our risk stratification system being 83.3%, 91.6% and 83.3% in predicting normal, benign and PCa cases in corresponding groups. Follow-up findings especially MRI results and PI-RADS scores supported the reliability of this stratification platform as well. Conclusion: Findings from our present study demonstrated that index combination via SVM algorithms may well facilitate clinicians in early differential screening of PCa. Meanwhile, our established PI stratification system based on SVM model and Sigmoid function provided substantial accuracy in preclinical risk prediction of developing prostate cancer.

3.
Vet Microbiol ; 284: 109849, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37597377

RESUMO

Japanese encephalitis virus (JEV) is a flavivirus transmitted by mosquitoes, causing epidemics of encephalitis in humans and reproductive disorders in pigs. This virus is predominantly distributed in Asian countries and causes tens of thousands of infections in humans annually. Interferon (IFN) is an essential component of host defense against viral infection. Multiple studies have indicated that multifunctional nonstructural proteins of flaviviruses suppress the host IFN response via various strategies to facilitate viral replication. The flaviviruses encoded nonstructural protein 4B (NS4B) is a multifunctional hydrophobic nonstructural protein widely involved in viral replication, pathogenesis and host immune evasion. In this study, we demonstrated that NS4B of JEV suppressed the induction of IFN-ß production, mainly through targeting the TLR3 and TRIF (a TIR domain-containing linker that induces IFN-ß) proteins in the TLR3 pathway. In a dual-luciferase reporter assay, JEV NS4B significantly inhibited the activation of IFN-ß promoter induced by TLR3 and simultaneously treated with poly (I:C). Moreover, NS4B also inhibited the activation of IFN-ß promoter triggered by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in TLR3 signaling pathway. Furthermore, NS4B inhibited the phosphorylation of IRF3 under the stimulation of TLR3 and TRIF molecules. Mechanistically, JEV NS4B interacts with TLR3 and TRIF and confirmed by co-localization and co-immunoprecipitation assay, thereby inhibiting the activation of downstream sensors in the TLR3-mediated pathway. Overall, our results provide a novel mechanism by which JEV NS4B interferes with the host's antiviral response through targeting TLR3 receptor signaling pathway.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Animais , Proteínas Adaptadoras de Transporte Vesicular/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Interferon beta/genética , Interferons , Suínos , Receptor 3 Toll-Like/genética
4.
Vet Microbiol ; 275: 109593, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36323175

RESUMO

Porcine sapelovirus (PSV) is an important emerging swine pathogen that causes diarrhoea, respiratory distress, severe reproductive system and neurological disorders in pigs, posing huge threat to swine industry. However, there are no effective serological diagnostic products and the epitope characterization of PSV VP1 protein is still largely unknown. In current study, we successfully expressed recombinant His-VP1 protein by prokaryotic expression system and the recombinant VP1 protein had good immunogenicity. BALB/C mice were then selected and immunized with purified recombinant VP1 protein, and two monoclonal antibodies (Mabs) 9F10 and 15E4 against VP1 were successfully prepared by hybrioma technology. The isotype of these two Mabs were identified and showed that Mab 9F10 with the heavy chain subtype was IgG1 and the light chain subtype was kappa. Mab 15E4 was identified as IgG2 for the heavy chain subtype and Kappa for the light chain subtype. The antigen epitopes of prepared two VP1 Mabs were clearly identified. The minimal unit of B cell specific epitope recognized by Mab 15E4 was 203YDGDG207 and conserved in different strain genotypes of PSV, indicating this epitope may be a good target for serological detection of PSV. However, the epitope recognized by Mab 9F10 was 8QAIVNRT14 and varied greatly among different PSV strains. Structural modeling analysis showed that the identified two novel B cell epitopes were located on the surface of VP1. Our study provides useful tool for the establishment the serological detection methods of PSV and may support the study of VP1 protein function.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Epitopos de Linfócito B , Picornaviridae , Proteínas Virais , Animais , Camundongos , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Epitopos de Linfócito B/imunologia , Imunoglobulina G , Camundongos Endogâmicos BALB C , Picornaviridae/imunologia , Suínos , Proteínas Virais/imunologia
7.
Open Biol ; 10(4): 190173, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32343928

RESUMO

Exosomes carrying microRNAs (miRNAs) have been demonstrated to play critical roles in the regulation of development, growth and metastasis of cancer. Bioinformatic predictions identified differentially expressed SRY-box 9 (SOX9) in OC, and the regulatory miRNA miR-139-5p. Here, we aim to evaluate the function of exosomal miR-139-5p in the sensitivity of ovarian cancer (OC) cells to cis-diamminedichloroplatinum(II) (DDP). Expression pattern of miR-139-5p and SOX9 in ovarian cancer cells (SKOV3) and DDP-resistant cells (SKOV3/DDP) was identified using reverse transcription quantitative polymerase chain reaction and western blot analysis. The relationship between miR-139-5p and SOX9 was validated using a dual-luciferase reporter assay. SKOV3/DDP cell line was developed and introduced with miR-30a-5p mimic to analyse the effects of miR-30a-5p on resistance to DDP. The in vitro and in vivo effects of exosomal miR-30a-5p on resistance of SKOV3 cells to DDP were assessed in a co-culture system of exosomes and OC cells as well as in tumour-bearing nude mice. High expression of SOX9 and low expression of miR-30-5p were witnessed in OC. Furthermore, miR-30-5p, a downregulated miRNA in SKOV3/DDP cells, increased the rate of cell apoptosis and enhanced the sensitivity of SKOV3/DDP cells to DDP by targeting SOX9. Moreover, exosomes carrying miR-30a-5p were identified to sensitize SKOV3/DDP cells to DDP both in vitro and in vivo. These data together supported an important conclusion that DDP-resistant OC cell-derived exosomal miR-30a-5p enhanced cellular sensitivity to DDP, highlighting a potential strategy to overcome drug resistance.


Assuntos
Cisplatino/administração & dosagem , Exossomos/transplante , MicroRNAs/genética , Neoplasias Ovarianas/terapia , Fatores de Transcrição SOX9/genética , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/genética
8.
AMIA Annu Symp Proc ; 2014: 1990-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25954472

RESUMO

The exponential growth of biomedical literature provides the opportunity to develop approaches for facilitating the identification of possible relationships between biomedical concepts. Indexing by Medical Subject Headings (MeSH) represent high-quality summaries of much of this literature that can be used to support hypothesis generation and knowledge discovery tasks using techniques such as association rule mining. Based on a survey of literature mining tools, a tool implemented using Ruby and R - PubMedMiner - was developed in this study for mining and visualizing MeSH-based associations for a set of MEDLINE articles. To demonstrate PubMedMiner's functionality, a case study was conducted that focused on identifying and comparing comorbidities for asthma in children and adults. Relative to the tools surveyed, the initial results suggest that PubMedMiner provides complementary functionality for summarizing and comparing topics as well as identifying potentially new knowledge.


Assuntos
Mineração de Dados , Medical Subject Headings , PubMed , MEDLINE , Unified Medical Language System
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...