Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
J Environ Manage ; 360: 121119, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733849

RESUMO

Soil property data plays a crucial role in watershed hydrology and non-point source (H/NPS) modeling, but how to improve modeling accuracy with affordable soil samplings and the effects of sampling information on H/NPS modeling remains to be further explored. In this study, the number of sampling points and soil properties were optimized by the information entropy and the spatial interpolation method. Then the sampled properties were parameterized and the effects of different parameterization schemes on H/NPS modeling were tested using the Soil and Water Assessment Tool (SWAT). The results indicated that the required sampling points increased successively for soil bulk density (SOL_BD), soil saturated hydraulic conductivity (SOL_K) and soil available water capacity (SOL_AWC). Compared to the traditional database (Harmonized world soil database), the NSE and R2 performance by new scheme increased by 22.8% and 10.5%, respectively. The entropy-based optimization reduced the sampling points by 13.2%, indicating a more cost-effective scheme. Compared to hydrological simulation, sampled properties showed greater effects on NPS modeling, especially for nitrogen. This proposed method/framework can be generalized to other watersheds by upscaling field soil sampling information to the watershed scale, thus improving H/NPS simulation.

2.
Phytomedicine ; 129: 155709, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38735197

RESUMO

BACKGROUND: Cornus officinalis Sieb. Et Zucc. has the efficacy of tonifying the marrow and filling up the essence, breaking up the accumulation and opening up the orifices. Our research team found that CoS extracts were protective against Aß25-35-induced memory impairment in mice. However, the pharmacodynamic components and mechanisms by which CoS improves AD have yet to be thoroughly explored and investigated. PURPOSE: This study focused on exploring the bioactive components and pharmacodynamic mechanisms of CoS aqueous extract underlying mitochondrial damage and neuroinflammation to improve Aß25-35-induced AD. METHODS: AD mouse models were generated using Aß25-35 brain injections. Different doses of CoS aqueous extract were orally administered to mice for 28 days. The cognitive function, neuronal and synaptic damage, mitochondrial damage (mitochondrial length, mitochondrial fusion fission-related protein expression), neuroglial activation, and immune inflammatory factor and ERK pathway-related protein levels of mice were assessed. The CoS aqueous extracts components were identified using UPLC-TQ/MS and screened for cellular activity. Midivi-1 (Drp1 inhibitor) or PD98059 (ERK inhibitor) was added to Aß25-35-exposed PC12 cells to assess whether CoS and its active compounds mMorB and CorE regulate mitochondrial fission through ERK/Drp1. PC12-N9 cells were cocultured to investigate whether mMorB and CorE could regulate mitochondrial division through the ERK pathway to modulate neuroinflammation. RESULTS: CoS improved exploration and memory in AD mice, reduced synaptic and mitochondrial damage in their hippocampus, and modulated disturbed mitochondrial dynamics. Moreover, CoS inhibited ERK pathway signaling and attenuated abnormal activation of glial cells and secondary immune inflammatory responses. Additionally, in vitro experiments revealed that CoS and its compounds 7ß-O-methylmorroniside (mMorB) and Cornusdiridoid E (CorE) ameliorated mitochondrial injury caused by Aß25-35 in PC12 cells through inhibition of the ERK/Drp1 pathway. Meanwhile, mMorB and CorE ameliorated cellular inflammation by inhibiting the Ras/ERK/CREB signaling pathway. CONCLUSION: CoS aqueous extract ameliorates behavioral deficits and brain damage in Aß25-35-induced AD mice by modulating the ERK pathway to attenuate mitochondrial damage and neuroinflammation, and the compounds mMorB and CorE are the therapeutically active ingredients.

4.
Biomaterials ; 309: 122613, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38759485

RESUMO

Vascular restenosis following angioplasty continues to pose a significant challenge. The heterocyclic trioxirane compound [1, 3, 5-tris((oxiran-2-yl)methyl)-1, 3, 5-triazinane-2, 4, 6-trione (TGIC)], known for its anticancer activity, was utilized as the parent ring to conjugate with a non-steroidal anti-inflammatory drug, resulting in the creation of the spliced conjugated compound BY1. We found that BY1 induced ferroptosis in VSMCs as well as in neointima hyperplasia. Furthermore, ferroptosis inducers amplified BY1-induced cell death, while inhibitors mitigated it, indicating the contribution of ferroptosis to BY1-induced cell death. Additionally, we established that ferritin heavy chain1 (FTH1) played a pivotal role in BY1-induced ferroptosis, as evidenced by the fact that FTH1 overexpression abrogated BY1-induced ferroptosis, while FTH1 knockdown exacerbated it. Further study found that BY1 induced ferroptosis by enhancing the NCOA4-FTH1 interaction and increasing the amount of intracellular ferrous. We compared the effectiveness of various administration routes for BY1, including BY1-coated balloons, hydrogel-based BY1 delivery, and nanoparticles targeting OPN loaded with BY1 (TOP@MPDA@BY1) for targeting proliferated VSMCs, for prevention and treatment of the restenosis. Our results indicated that TOP@MPDA@BY1 was the most effective among the three administration routes, positioning BY1 as a highly promising candidate for the development of drug-eluting stents or treatments for restenosis.

5.
J Adv Nurs ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742524

RESUMO

AIM: This article appraises models and theories related to advanced nursing practice. It argues that while the role of the advanced nurse practitioner builds on and extends beyond traditional nursing, it remains firmly grounded in 'caring'. BACKGROUND: The stereotype that nurses 'care' and doctors 'cure' is fading. Increasingly, nurses have crossed boundaries and conducted independent assessment, diagnosis, prescribing and consultation, which used to be the doctor's role. Confusion and argument have arisen due to the higher-level practice of the advanced nurse practitioner, as many questions where these 'doctor nurses' stand. DESIGN: A literature review. DATA SOURCES: Databases, including CINAHL, Medline and Google Scholar, were searched. METHOD: Databases were searched, and relevant studies and review articles from 1970 to 2023 were identified using the following keywords: 'advanced nurse practitioner', 'nurse practitioner', 'advanced nursing', 'advance practice', 'nurse practitioner', 'nursing theory' and 'nursing model'. RESULTS: Although advanced nurse practitioners identify themselves as nurses, there is limited use of nursing theory to conceptualize this new level of practice and to define their contribution to the multi-disciplinary team. It is noted that a holistic approach to personalized patient care, based on therapeutic relationships and effective communication, may help us identify the unique contribution of the advanced nurse practitioner. CONCLUSIONS: The development of advanced nursing theory needs to capture this holistic approach and its caring element to recognize the value and strengthen the identity allegiance of this hybrid role. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE: Holistic approach and patient-centred care, effective communication and the therapeutic relationship are strong characteristics relating to ANP practice, the latter of which is yet to be clearly defined and captured in nursing theories. Conceptualizing ANP practice and capturing their valuable nursing care will enable better understanding and clarity for the role to realize its full potential.

6.
Cell Rep ; 43(5): 114174, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38700982

RESUMO

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.

7.
Langmuir ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751154

RESUMO

Water is the lifeblood of everything on earth, nourishing and nurturing all forms of life, while also contributing to the development of civilization. However, with the rapid development of economic construction, especially the accelerated process of modern industrialization, the pollution of oily sewage is becoming increasingly serious, affecting the ecological balance and human health. The efficient elimination of pollutants in sewage is, therefore, particularly urgent. In this paper, a core-shell microbial reactor (MPFA@CNF-SA-AM) was fabricated by using nanocellulose and sodium alginate (SA) particles embedded with microorganisms as the core and lipophilic and hydrophobic fly ash as the outer shell layer. Compared with that of free microorganisms and cellulose and SA aerogel pellets loading with microorganisms (CNF-SA-AM), which has a degradation efficiency of 60.69 and 82.89%, respectively, the MPFA@CNF-SA-AM possesses a highest degradation efficiency of 90.60% within 240 h. So that this self-floating microbial reactor has selective adsorption properties to achieve oil-water separation in oily wastewater and high effective degradation of organic pollutants with low cost. The adsorption curves of MPFA@CNF-SA-AM for diesel and n-hexadecane were studied. The results showed that the adsorption follows the Freundlich model and is a multimolecular layer of physical adsorption. In addition, the degradation mechanism of diesel oil was studied by gas chromatography-mass spectrometry. The results showed that diesel oil was selectively adsorbed to the interior of MPFA@CNF-SA-AM, and it was degraded by enzymes in microorganisms into n-hexadecanol, n-hexadecaldehyde, and n-hexadecanoic acid in turn, and finally converted to water and carbon dioxide. Compared with existing oily wastewater treatment methods, this green and pollution-free dual-functional core-shell microbial reactor has the characteristics of easy preparation, high efficiency, flexibility, and large-scale degradation. It provides a new, effective green choice for oily wastewater purification and on-site oil spill accidents.

8.
IEEE Trans Med Imaging ; PP2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564346

RESUMO

Diabetic retinopathy (DR) is a serious ocular condition that requires effective monitoring and treatment by ophthalmologists. However, constructing a reliable DR grading model remains a challenging and costly task, heavily reliant on high-quality training sets and adequate hardware resources. In this paper, we investigate the knowledge transferability of large-scale pre-trained models (LPMs) to fundus images based on prompt learning to construct a DR grading model efficiently. Unlike full-tuning which fine-tunes all parameters of LPMs, prompt learning only involves a minimal number of additional learnable parameters while achieving a competitive effect as full-tuning. Inspired by visual prompt tuning, we propose Semantic-oriented Visual Prompt Learning (SVPL) to enhance the semantic perception ability for better extracting task-specific knowledge from LPMs, without any additional annotations. Specifically, SVPL assigns a group of learnable prompts for each DR level to fit the complex pathological manifestations and then aligns each prompt group to task-specific semantic space via a contrastive group alignment (CGA) module. We also propose a plug-and-play adapter module, Hierarchical Semantic Delivery (HSD), which allows the semantic transition of prompt groups from shallow to deep layers to facilitate efficient knowledge mining and model convergence. Our extensive experiments on three public DR grading datasets demonstrate that SVPL achieves superior results compared to other transfer tuning and DR grading methods. Further analysis suggests that the generalized knowledge from LPMs is advantageous for constructing the DR grading model on fundus images.

9.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
10.
IEEE Trans Med Imaging ; PP2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587957

RESUMO

Accurate retinal layer segmentation on optical coherence tomography (OCT) images is hampered by the challenges of collecting OCT images with diverse pathological characterization and balanced distribution. Current generative models can produce high-realistic images and corresponding labels without quantitative limitations by fitting distributions of real collected data. Nevertheless, the diversity of their generated data is still limited due to the inherent imbalance of training data. To address these issues, we propose an image-label pair generation framework that generates diverse and balanced potential data from imbalanced real samples. Specifically, the framework first generates diverse layer masks, and then generates plausible OCT images corresponding to these layer masks using two customized diffusion probabilistic models respectively. To learn from imbalanced data and facilitate balanced generation, we introduce pathological-related conditions to guide the generation processes. To enhance the diversity of the generated image-label pairs, we propose a potential structure modeling technique that transfers the knowledge of diverse sub-structures from lowly- or non-pathological samples to highly pathological samples. We conducted extensive experiments on two public datasets for retinal layer segmentation. Firstly, our method generates OCT images with higher image quality and diversity compared to other generative methods. Furthermore, based on the extensive training with the generated OCT images, downstream retinal layer segmentation tasks demonstrate improved results. The code is publicly available at: https://github.com/nicetomeetu21/GenPSM.

11.
Cell Biochem Biophys ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619644

RESUMO

Levodopa (L-3,4-dihydroxyphenylalanine, L-Dopa) alleviates the symptoms of Parkinson's disease (PD), yet prolonged usage may give rise to severe adverse effects. Resveratrol (RSV) is a potent antioxidant, anticancer and anti-inflammatory agent. And a variety of polyphenol antioxidant compounds derived from RSV combined with levodopa have demonstrated neuroprotective activity against neuronal cell death. The purpose of this study was to examine the impact of this combination of RSV and L-Dopa on the survival rate, growth status, and reactive oxygen species (ROS) of MES23.5 dopamine (DA) neuron cells. In this study, we induced MPP+ in MES23.5 dopamine neuron cells and observed their survival rate, growth status, ROS content, as well as the effect of RSV combined with L-Dopa on cell survival. We also measured malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity levels as indicators of mitochondrial function, oxidative stress, and oxidative damage in the cells. Our results indicated that the MES23.5 dopamine neurons had decreased survival, poor growth status, and increased ROS content after MPP+ induction. Moreover, we found that MDA levels were elevated, and SOD activity levels were decreased, suggesting that the cells experienced abnormal mitochondrial function. However, when RSV was combined with L-Dopa, the cells showed a reduced level of MPP + -induced oxidative damage, with a more significant inhibitory effect observed in the RSV group at a concentration of 50 µmol/L. In conclusion, we found that the effects of co-administration of RSV with L-Dopa (100 µmol/L) was more effective than L-Dopa administered at the high dose. Thus, we found that RSV has the potential to reduce the dose of L-Dopa required to improve PD symptoms.

12.
Fitoterapia ; 175: 105963, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631598

RESUMO

Four new monomeric sorbicillinoids, trichillinoids A - D (1-4), along with two known dimeric sorbicillinoids (5 and 6), and five known monomeric sorbicillinoids (7-11), were obtained from the marine-fish-derived fungus Trichoderma sp. G13. They were structurally characterized on the basis of comprehensive spectroscopic investigations (NMR, HRESIMS, and ECD). Compounds 1-4 displayed moderate anti-inflammatory activities, according to inhibiting the production of NO in RAW264.7 cells activated with IC50 values ranging from 14 to 20 µM.

13.
Huan Jing Ke Xue ; 45(5): 2905-2912, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629552

RESUMO

The objective of this study was to explore the effects of different amounts of biochar on the migration process and characteristics of NO3--N in loessial soil. In this study, six groups of mixed soil samples with biochar and loessial soil mass ratios of 0% (T0), 1% (T1), 2% (T2), 3% (T3), 4% (T4), and 5% (T5) were used as research objects. NO3--N was used as the tracer. Through the indoor soil column solute transport simulation tests, the effects of different biochar application amounts on the NO3--N transport process in loessial soil were simulated and studied. The results showed that the breakthrough curve of NO3--N in loessial soil shifted to the right with the increasing of biochar application, and the peak value gradually decreased. The initial penetration time, complete penetration time, and total penetration time increased with the increasing of biochar application amount. The total penetration time of NO3- in the T1, T2, T3, T4, and T5 treatments was 1.26, 2.31, 2.72, 3.22, and 3.57 times that of T0, respectively. The R2 was > 0.997 and RMSE was < 2.083 of the two-zone model (TRM). Compared with the convection-dispersion equation (CDE), the TRM model had higher fitting accuracy and could better simulate the NO3--N migration process in loessial soil after the application of different contents of biochar. The analysis of the fitting parameters of the TRM model showed that the average pore velocity, hydrodynamic dispersion coefficient, and water content ratio in the movable zone gradually decreased with the increasing of biochar application, whereas the dispersion and mass exchange coefficient showed an increasing trend. The results showed that biochar application could effectively enhance the ability of loessial soil to fix NO3--N, reduce the leakage of NO3--N to groundwater, and play an important role in maintaining soil fertility and preventing groundwater pollution.


Assuntos
Carvão Vegetal , Solo , Nitrogênio
14.
Fitoterapia ; 175: 105960, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621426

RESUMO

Five undescribed eremophilane-type sesquiterpenes, remophilanetriols E-I (1-5), along with seven known compounds (6-12) were isolated from the fresh roots of Rehmannia glutinosa. Their structures were characterized by extensive spectroscopic data analysis and their absolute configurations were determined by comparing their calculated electronic circular dichroism (ECD) spectra and experimental ECD spectra. The anti-pulmonary fibrosis activities of all compounds were evaluated in vitro by MTT methods, and compounds 2, 8, 10, and 12 exhibited excellent anti-pulmonary fibrosis activities. In addition, compound 2 can reduce the levels of ROS and apoptosis in TGF-ß1-induced BEAS-2B cells.

15.
Ying Yong Sheng Tai Xue Bao ; 35(3): 639-647, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646751

RESUMO

Vegetation restoration can effectively enhance soil quality and soil organic carbon (SOC) sequestration. In this study, the distribution characteristics of soil nutrients and SOC along soil profile (0-100 cm), and their responses to restoration years (16, 28, 38 years) were studied in Caragana korshinskii plantations in the southern mountainous area of Ningxia, compared with cropland and natural grassland. The results showed that: 1) the contents of SOC, soil total nitrogen (TN), total phosphorus (TP), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the proportion of particulate organic carbon to total organic carbon (POC/SOC) all decreased with increasing soil depth. The ratio of mineral-associated organic carbon to total organic carbon (MAOC/SOC) exhibited an opposite trend. 2) The contents of SOC, TN, TP, C:P, N:P, POC and MAOC gra-dually decreased as the restoration years increased. However, the C:N ratio showed no significant change. The POC/SOC ratio initially increased and then decreased, while the MAOC/SOC ratio decreased initially and then increased. 3) In three different types of vegetation, POC, MAOC, and SOC showed a highly significant positive linear correlation, with the increase in SOC mainly depended on the increase in MAOC. The SOC, TN, TP, POC and MAOC contents in natural grassland and C. korshinskii plantations were significantly higher than those in cropland. In conclusion, soil nutrients and POC and MAOC contents of C. korshinskii plantations gradually decreased with the increases in restoration years. However, when compared with cropland, natural grassland and C. korshinskii plantations demonstrated a greater capacity to maintain and enhance soil nutrient and carbon storage.


Assuntos
Caragana , Carbono , Florestas , Nitrogênio , Compostos Orgânicos , Fósforo , Solo , China , Solo/química , Carbono/análise , Caragana/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Compostos Orgânicos/análise , Nutrientes/análise , Recuperação e Remediação Ambiental/métodos , Sequestro de Carbono , Ecossistema
16.
Child Abuse Negl ; 152: 106796, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631188

RESUMO

BACKGROUND: While childhood maltreatment is understood to be a significant risk factor for adolescent internalizing problems (depression and anxiety), underlying mechanisms linking each type of maltreatment to internalizing problems in adolescents remain unclear. Moreover, the current state of knowledge regarding the associations between maladaptive cognitive emotion regulation strategies and each type of maltreatment, as well as their impact on adolescent internalizing problems, is limited. Additionally, it remains unclear whether these maladaptive strategies mediate this relationship. OBJECTIVE: This study sought to investigate the effects of childhood maltreatment types on adolescent internalizing problems and to explore whether the overall and specific types of maladaptive strategies mediate these associations. METHODS: Using a cross-sectional design, adolescents (N = 7071, Mage = 14.05 years, SDage = 1.54) completed online questionnaires assessing childhood maltreatment, maladaptive cognitive emotion regulation strategies (including rumination, catastrophizing, self-blame, and other-blame), anxiety, and depression. The hypothesized mediating effects were tested using the Lavaan package in R software (4.1.2). RESULTS: Different maltreatment types had varying effects on adolescent internalizing problems. Emotional neglect, emotional abuse, and sexual abuse significantly affected anxiety and depression, whereas physical neglect and physical abuse did not. Other than physical neglect and physical abuse, overall maladaptive strategies mediated the relationship between the other three types of maltreatment (emotional abuse, emotional neglect, and sexual abuse) and internalizing problems (anxiety and depression). For specific maladaptive strategies, rumination mediated the effects of physical abuse, emotional abuse, emotional neglect, and sexual abuse on internalizing problems (anxiety and depression). In contrast, catastrophizing mediated the relationship between physical neglect, emotional abuse, emotional neglect, sexual abuse and internalizing problems (anxiety and depression). CONCLUSIONS: These results suggest that the effects of maltreatment types on internalizing problems are different and that maladaptive strategies, particularly rumination and catastrophizing, are important mechanisms through which childhood maltreatment affects internalizing problems. This is a reminder that mental health workers need to consider the different effects of maltreatment types when intervening and recognize the importance of prioritizing interventions for rumination and catastrophizing.


Assuntos
Ansiedade , Maus-Tratos Infantis , Depressão , Regulação Emocional , Humanos , Adolescente , Masculino , Feminino , Estudos Transversais , Maus-Tratos Infantis/psicologia , Depressão/psicologia , Depressão/epidemiologia , Ansiedade/psicologia , Criança , Inquéritos e Questionários , Adaptação Psicológica , Abuso Emocional/psicologia
17.
J Hazard Mater ; 471: 134355, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643583

RESUMO

Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.


Assuntos
Bactérias , Microbiologia do Solo , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Solo/química , Aerobiose , Anaerobiose , Farmacorresistência Bacteriana/genética
18.
BMC Genomics ; 25(1): 397, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654166

RESUMO

BACKGROUND: Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS: To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS: All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sítios de Ligação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Genoma de Planta , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
19.
Front Mol Neurosci ; 17: 1289476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646099

RESUMO

Social memory is the ability to discriminate between familiar and unknown conspecifics. It is an important component of social cognition and is therefore essential for the establishment of social relationships. Although the neural circuit mechanisms underlying social memory encoding have been well investigated, little focus has been placed on the regulatory mechanisms of social memory processing. The dopaminergic system, originating from the midbrain ventral tegmental area (VTA), is a key modulator of cognitive function. This study aimed to illustrate its role in modulating social memory and explore the possible molecular mechanisms. Here, we show that the activation of VTA dopamine (DA) neurons is required for the formation, but not the retrieval, of social memory. Inhibition of VTA DA neurons before social interaction, but not 24 h after social interaction, significantly impaired social discrimination the following day. In addition, we showed that the activation of VTA DA neurons was regulated by the serine/threonine protein kinase liver kinase B1 (Lkb1). Deletion of Lkb1 in VTA DA neurons reduced the frequency of burst firing of dopaminergic neurons. Furthermore, Lkb1 plays an important role in regulating social behaviors. Both genetic and virus-mediated deletions of Lkb1 in the VTA of adult mice impaired social memory and subsequently attenuated social familiarization. Altogether, our results provide direct evidence linking social memory formation to the activation of VTA DA neurons in mice and illustrate the crucial role of Lkb1 in regulating VTA DA neuron function.

20.
Brain Stimul ; 17(3): 553-560, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604563

RESUMO

Non-invasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), are popular methods for inducing neuroplastic changes to alter cognition and behaviour. One challenge for the field is to optimise stimulation protocols to maximise benefits. For this to happen, we need a better understanding of how stimulation modulates cortical functioning/behaviour. To date, there is increasing evidence for a dose-response relationship between tDCS and brain excitability, however how this relates to behaviour is not well understood. Even less is known about the neurochemical mechanisms which may drive the dose-response relationship between stimulation intensities and behaviour. Here, we examine the effect of three different tDCS stimulation intensities (1 mA, 2 mA, 4 mA anodal motor cortex tDCS) administered during the explicit learning of motor sequences. Further, to assess the role of dopamine in the dose-response relationship between tDCS intensities and behaviour, we examined how pharmacologically increasing dopamine availability, via 100 mg of levodopa, modulated the effect of stimulation on learning. In the absence of levodopa, we found that 4 mA tDCS improved and 1 mA tDCS impaired acquisition of motor sequences relative to sham stimulation. Conversely, levodopa reversed the beneficial effect of 4 mA tDCS. This effect of levodopa was no longer evident at the 48-h follow-up, consistent with previous work characterising the persistence of neuroplastic changes in the motor cortex resulting from combining levodopa with tDCS. These results provide the first direct evidence for a role of dopamine in the intensity-dependent effects of tDCS on behaviour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...