Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Phytopathology ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669603

RESUMO

Sclerotinia sclerotiorum is an economically damaging fungal pathogen that causes Sclerotinia stem rot in legumes, producing enormous yield losses. This pathogen is difficult to control due to its wide host spectrum and ability to produce sclerotia, which are resistant bodies that can remain active for long periods under harsh environmental conditions. Here, the biocontrol methods for the management of S. sclerotiorum in legumes are reviewed. Bacillus strains, which synthesized lipopeptides and VOCs, showed high efficacies in soybean plants, whereas the highest efficacies for the control of the pathogen in alfalfa and common bean were observed when using Coniothyrium minitans and Streptomyces spp., respectively. The biocontrol efficacies in fields were under 65%, highlighting the lack of strategies to achieve a complete control. Overall, while most studies involved extensive screenings using different biocontrol agent concentrations and application conditions, there is a lack of knowledge regarding the specific antifungal mechanisms, which limits the optimization of the reported methods.

2.
Pest Manag Sci ; 79(9): 3177-3189, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37024430

RESUMO

BACKGROUND: Kiwifruit is highly susceptible to fungal pathogens, such as Botrytis cinerea, which reduce crop production and quality. In this study, dipicolinic acid (DPA), which is one of the main components of Bacillus spores, was evaluated as a new elicitor to enhance kiwifruit resistance to B. cinerea. RESULTS: DPA enhances antioxidant capacity and induces the accumulation of phenolics in B. cinerea-infected 'Xuxiang' kiwifruit. The contents of the main antifungal phenolics in kiwifruit, including caffeic acid, chlorogenic acid and isoferulic acid, increased after DPA treatment. DPA enhanced H2 O2 levels after 0 and 1 days, which promoted catalase (CAT) and superoxide dismutase (SOD) activities, reducing long-term H2 O2 levels. DPA promoted the up-regulation of several kiwifruit defense genes, including CERK1, MPK3, PR1-1, PR1-2, PR5-1 and PR5-2. Furthermore, DPA at 5 mM inhibited B. cinerea symptoms in kiwifruit (95.1% lesion length inhibition) more effectively than the commercial fungicides carbendazim, difenoconazole, prochloraz and thiram. CONCLUSIONS: The antioxidant properties of DPA and the main antifungal phenolics of kiwifruit were examined for the first time. This study uncovers new insights regarding the potential mechanisms used by Bacillus species to induce disease resistance. © 2023 Society of Chemical Industry.


Assuntos
Antifúngicos , Antioxidantes , Antifúngicos/farmacologia , Botrytis , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
4.
Pest Manag Sci ; 78(8): 3664-3675, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35611815

RESUMO

BACKGROUND: Xanthomonas axonopodis pv. glycines (Xag) is the causal agent of bacterial pustule disease and results in enormous losses in soybean production. Although isoflavones are known to be involved in soybean resistance against pathogen infection, the effects of exogenous isoflavones on soybean plants remain unexplored. RESULTS: Irrigation of soybean plants with isoflavone genistein inhibited plant growth for short periods, probably by inhibiting the tyrosine (brassinosteroids) kinase pathway, and increased disease resistance against Xag. The number of lesions was reduced by 59%-63% when applying 50 µg ml-1 genistein. The effects on disease resistance were observed for 15 days after treatment. Genistein also enhanced the disease resistance of soybean against the fungal pathogen Sclerotinia sclerotiorum. Exogenous genistein increased antioxidant capacity, decreased H2 O2 level and promoted the accumulation of phenolics in Xag-infected soybean leaves. Exogenous genistein reduced the amounts of endogenous daidzein, genistein and glycitein and increased the concentration of genistin, which was found to show strong antibacterial activity against the pathogen and to reduce the expression of virulence factor yapH, and flagella formation gene flgK. The expression of several soybean defense genes, such as chalcone isomerase, glutathione S-transferase and 1-aminocyclopropane-1-carboxylate oxidase 1, was upregulated after genistein treatment. CONCLUSIONS: The effects of exogenous genistein on soybean plants were examined for the first time, revealing new insights into the roles of isoflavones in soybean defense and demonstrating that irrigation with genistein can be a suitable method to induce disease resistance in soybean plants. © 2022 Society of Chemical Industry.


Assuntos
Fabaceae , Isoflavonas , Xanthomonas axonopodis , Resistência à Doença , Genisteína/metabolismo , Genisteína/farmacologia , Glicina/metabolismo , Isoflavonas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Glycine max/microbiologia , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/metabolismo
5.
J Food Sci ; 87(5): 1961-1982, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35411587

RESUMO

Sprouting is a common strategy to enhance the nutritional value of seeds. Here, all the reports regarding the occurrence of isoflavones in soybean sprouts have been covered for the first time. Isoflavones were detected with concentrations ranging from 1 × 10-2 to 1 × 101  g/kg in soybean sprouts. Isoflavone concentration depends on the cultivar, germination time, part of the sprout, light, and temperature. Aglycon isoflavones increased during germination, especially in the hypocotyl, while 6″-O-malonyl-7-O-ß-glucoside isoflavones decreased in the hypocotyl and increased in the cotyledon and root. Cooking reduced total isoflavone content. Regarding the strategies to enhance isoflavone contents, fermentation with Aspergillus sojae and external irradiation with UV-A or far-infrared were the methods that caused the greatest increases in aglycon, 7-O-ß-glucoside, and total isoflavones. However, the largest increases in 6″-O-malonyl-7-O-ß-glucoside and 6″-O-acetyl-7-O-ß-glucosides isoflavones were detected after treatment with chitohexaose and calcium chloride, respectively. PRACTICAL APPLICATION: Soybean sprouts are widely consumed and provide essential proteins, antioxidants, and minerals. They are rich in isoflavones, which exhibit numerous health benefits, and have been studied as alternative therapies for a range of hormone-dependent conditions, such as cancer, menopausal symptoms, cardiovascular disease, and osteoporosis. Despite numerous reports being published to date regarding the occurrence of isoflavones in soybean sprouts, the publications in this field are highly dispersed, and a review has not yet been published. This review aims to (1) highlight the particular isoflavones that have been detected in soybean sprouts and their concentrations, (2) compared the effects of temperature, light, cooking and soybean cultivar affect the isoflavone levels on the different parts of the sprout, and (3) discuss the efficacy of the methods to enhance isoflavone contents. This review will provide a better understanding of the current state of this field of research by comparing the general trends and the different treatments for soybean sprouts.


Assuntos
Isoflavonas , Antioxidantes/metabolismo , Glucosídeos/metabolismo , Isoflavonas/metabolismo , Sementes/metabolismo , Glycine max/metabolismo
6.
Nat Nanotechnol ; 17(5): 541-551, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332294

RESUMO

Plasma membrane rupture is a promising strategy for drug-resistant cancer treatment, but its application is limited by the low tumour selectivity of membranolytic molecules. Here we report the design of 'proton transistor' nanodetergents that can convert the subtle pH perturbation signals of tumour tissues into sharp transition signals of membranolytic activity for selective cancer therapy. Our top-performing 'proton transistor' nanodetergent, P(C6-Bn20), can achieve a >32-fold change in cytotoxicity with a 0.1 pH input signal. At physiological pH, P(C6-Bn20) self-assembles into neutral nanoparticles with inactive membranolytic blocks shielded by poly(ethylene glycol) shells, exhibiting low toxicity. At tumour acidity, a sharp transition in its protonation state induces a morphological transformation and an activation of the membranolytic blocks, and the cation-π interaction facilitates the insertion of benzyl groups-containing hydrophobic domains into the cell membranes, resulting in potent membranolytic activity. P(C6-Bn20) is well tolerated in mice and shows high anti-tumour efficacy in various mouse tumour models.


Assuntos
Nanopartículas , Neoplasias , Animais , Concentração de Íons de Hidrogênio , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química , Prótons
7.
Mitochondrial DNA B Resour ; 6(7): 1832-1833, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34124359

RESUMO

In this study, the complete chloroplast (cp) genome of Duranta erecta was assembled using Illumina sequencing data. The complete cp genome is 149,869 bp in length, including a pair of invert repeats (IRA and IRB) regions of 22,839 bp, large single-copy (LSC) region of 86,201 bp, and small single-copy (SSC) region of 17,990 bp. The G + C content of this cp genome was 38.26%. A total of 128 genes were predicted in the genome, including 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis confirmed the phylogenetic relationship between D. erecta and other representative species of Verbenaceae.

8.
Mitochondrial DNA B Resour ; 6(7): 1834-1836, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34124360

RESUMO

The complete chloroplast (cp) genome of Crassocephalum crepidioides was sequenced and assembled for the first time. In this study, the total genome size is 150,596 bp in length and demonstrates a typical quadripartite structure containing a large single copy (LSC, 82,575 bp) and a small single copy (SSC, 18,293 bp), separated by a pair of inverted repeats (IRa, IRb) of 24,864 bp. The G + C content of this cp genome was 37.21%. Gene annotation analysis identified 130 genes including 85 protein-coding genes, 37 transfer RNA, and 8 ribosomal RNA genes. The maximum-likelihood phylogenetic analysis result showed that C. crepidioides was closely related to Nannoglottis ravida in the phylogenetic relationship.

9.
Mitochondrial DNA B Resour ; 6(6): 1747-1748, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34104759

RESUMO

The complete chloroplast (cp) genome of Ehrharta erecta was sequenced and assembled for the first time. In this study, The total genome size is 134,511 bp in length and demonstrates a typical quadripartite structure containing a large single copy (LSC, 95,227 bp) and a small single copy (SSC, 12,306 bp), separated by a pair of inverted repeats (IRa, IRb) of 13,489 bp. The G + C content of this chloroplast genome was 38.76%. Gene annotation analysis identified 130 genes including 84 protein-coding genes, 38 transfer RNA, and 8 ribosomal RNA genes. The maximum-likelihood phylogenetic analysis result showed that E. erecta was closely related to O. sativa in the phylogenetic relationship.

10.
Mitochondrial DNA B Resour ; 6(3): 927-928, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33796685

RESUMO

In this study, the complete chloroplast genome of O. sativa Temperate Japonica YunJing-24 was assembled using Illumina sequencing data. The complete chloroplast (cp) genome is 134,556 bp in length, including a pair of invert repeats (IRA and IRB) regions of 20,797 bp, large single-copy (LSC) region of 80,615 bp, and small single-copy (SSC) region of 12,347 bp. A total of 129 genes were predicted in the genome, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis confirmed the phylogenetic relationship between O. sativa Temperate Japonica and other representative species.

11.
Nanoscale ; 11(24): 11789-11807, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31184642

RESUMO

Autophagy may represent a common cellular response to nanomaterials. In the present study, it was demonstrated that zinc oxide nanoparticle (ZON)-elicited autophagy contributes to tumor cell killing by accelerating the intracellular dissolution of ZONs and reactive oxygen species (ROS) generation. In particular, ZONs could promote Atg5-regulated autophagy flux without the impairment of autophagosome-lysosome fusion, which is responsible for ZON-elicited cell death in cancer cells. On the other hand, a further study revealed that a significant free zinc ion release in lysosomal acid compartments and sequential ROS generation in cells treated with ZONs were also associated with tumor cytotoxicity. Intriguingly, the colocalization between FITC-labeled ZONs and autophagic vacuoles indicates that the intracellular fate of ZONs is associated with autophagy. Moreover, the chemical or genetic inhibition of autophagy significantly reduced the level of intracellular zinc ion release and ROS generation separately, demonstrating that ZON-induced autophagy contributed toward cancer cell death by accelerating zinc ion release and sequentially increasing intracellular ROS generation. The modulation of autophagy holds great promise for improving the efficacy of tumor chemotherapy. Herein, ZONs were verified to enhance chemotherapy in both normal and drug-resistant cancer cells via synergistic autophagy elicitation. Further, this elicitation resulted in tremendous zinc ion release and ROS generation, which accounted for enhancing the tumor chemotherapy and overcoming drug resistance. No obvious changes in the expression level of P-gp proteins or the amount of doxorubicin uptake induced by ZONs in MCF-7/ADR cells also indicated that the increased zinc ion release and ROS generation via synergistic autophagy induction were responsible for overcoming the drug resistance. Finally, in vivo experiments involving animal models of 4T1 tumor cells revealed that the antitumor therapeutic effect of a combinatory administration obviously outperformed those of ZONs or free doxorubicin treatment alone at the same dose, which could be attenuated by the autophagy inhibitor wortmannin or ion-chelating agent EDTA. Taken together, our results reveal the mechanism wherein the autophagy induction by ZONs potentiates cancer cell death and a novel biological application for ZONs in adjunct chemotherapy in which autophagy reinforces zinc ion release and ROS generation.


Assuntos
Antineoplásicos , Morte Celular Autofágica/efeitos dos fármacos , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas , Neoplasias Experimentais/tratamento farmacológico , Óxido de Zinco , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Células HeLa , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/química , Óxido de Zinco/farmacologia
12.
Am J Transl Res ; 10(5): 1273-1283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887944

RESUMO

The goal of this study was to assess the ability of quercetin (Qu) to protect against myocardial ischemia-reperfusion injury. Cardiac injury was assessed in the context of global ischemia of isolated hearts, coronary artery ligated rats, and H9C2 cells. Qu was shown to significantly inhibit inflammatory cytokine production in coronary artery occlusion-induced rats, isolated hearts, and H9C2 cells. Electrocardiographic analysis revealed a restoration of the ST segment to normal levels following treatment of Qu. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that Qu could significantly alleviate myocardial injury in vivo. Furthermore, ex vivo analyses showed improved recovery of heart function in response to Qu, characterized by enhanced myocardial contractility and coronary flow in isolated hearts. From a mechanistic standpoint, these effects appeared to be mediated through the HMGB1-related pathway, with expression of downstream targets significantly downregulated in rats, isolated hearts, and H9C2 cells following Qu treatment. Taken together, these data demonstrate the protective effects of Qu against myocardial injury via inhibition of the HMGB1 pathway in a myocardial ischemia-reperfusion injury (I/R) model.

13.
Mitochondrial DNA B Resour ; 3(1): 233-234, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33474127

RESUMO

Dendrobium bellatulum Rolfe is an Endangered orchid species that is distributed in the subtropical regions of Yunnan Province, China. It was listed in the category of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Here, we reported the complete chloroplast (cp) genome sequence and the cp genomic features of D. bellatulum. The genome was 152,107 bp long with 129 genes comprising 83 protein-coding genes, 40 tRNA genes, and 6 rRNA genes. Phylogenetic analysis of a data set of cp genomes indicated that D. bellatulum is clustered with other species in Dendrobium.

14.
Arch Microbiol ; 200(3): 423-429, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29184975

RESUMO

A novel Gram-staining positive, moderately halophilic, endospore-forming, motile, rod-shaped and strictly aerobic strain, designated YIM 93565T, was isolated from a salt lake in Xinjiang province of China and subjected to a polyphasic taxonomic study. Strain YIM 93565T grew in the range of pH 6.0-9.0 (optimum pH 7.0), 10-45 °C (optimum 35-40 °C) and at salinities of 2-24% (w/v) NaCl (optimum 7-10%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM 93565T clustered with members of the genera Gracilibacillus and form a clade with Gracilibacillus bigeumensis KCTC 13130T (95.6% similarity) and Gracilibacillus halophilus DSM 17856T (94.9%), which was well separated from others. The DNA G + C content of this novel strain was 36.8 mol%. The major fatty acids were anteiso-C15:0, iso-C15:0, C16:0 and anteiso-C17:0 and its polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, one unidentified glycolipid and two unidentified phospholipids. The predominant menaquinone was MK-7. The cell-wall peptidoglycan was based on meso-diaminopimelic acid. Based on the results of phylogenetic, physiological and chemotaxonomic comparative analyses, the isolate is assigned to a novel species of the genus Gracilibacillus, for which the name Gracilibacillus eburneus sp. nov. is proposed, with the type strain YIM 93565T (= DSM 23710T = CCTCC AB 2013249T).


Assuntos
Bacillaceae/classificação , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Composição de Bases , Parede Celular/química , China , DNA Bacteriano/genética , Ácido Diaminopimélico/análise , Ácido Diaminopimélico/química , Ácidos Graxos/análise , Ácidos Graxos/química , Lagos/microbiologia , Tipagem Molecular , Fosfolipídeos/análise , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Tolerância ao Sal , Microbiologia da Água
15.
Cancer Cell Int ; 17: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28070171

RESUMO

BACKGROUND: Casticin, the flavonoid extracted from Vitex rotundifolia L, exerts various biological effects, including anti-inflammatory and anti-cancer activity. The aim of this study is to investigate the effects and mechanisms of casticin in human gallbladder cancer cells. METHODS: Human NOZ and SGC996 cells were used to perform the experiments. CCK-8 assay and colony formation assay were performed to evaluate cell viability. Cell cycle analyses and annexin V/PI staining assay for apoptosis were measured using flow cytometry. Western blot analysis was used to evaluate the changes in protein expression, and the effect of casticin treatment in vivo was experimented with xenografted tumors. RESULTS: In this study, we found that casticin significantly inhibited gallbladder cancer cell proliferation in a dose- and time-dependent manner. Casticin also induced G0/G1 arrest and mitochondrial-related apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9 and cleaved poly ADP-ribose polymerase expression, and by downregulating Bcl-2 expression. Moreover, casticin induced cycle arrest and apoptosis by upregulating p27 and downregulating cyclinD1/cyclin-dependent kinase4 and phosphorylated protein kinase B. In vivo, casticin inhibited tumor growth. CONCLUSION: Casticin induces G0/G1 arrest and apoptosis in gallbladder cancer, suggesting that casticin might represent a novel and effective agent against gallbladder cancer.

16.
Small ; 13(7)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27925395

RESUMO

The diverse biological effects of nanomaterials form the basis for their applications in biomedicine but also cause safety issues. Induction of autophagy is a cellular response after nanoparticles exposure. It may be beneficial in some circumstances, yet autophagy-mediated toxicity raises an alarming concern. Previously, it has been reported that upconversion nanoparticles (UCNs) elicit liver damage, with autophagy contributing most of this toxicity. However, the detailed mechanism is unclear. This study reveals persistent presence of enlarged autolysosomes in hepatocytes after exposure to UCNs and SiO2 nanoparticles both in vitro and in vivo. This phenomenon is due to anomaly in the autophagy termination process named autophagic lysosome reformation (ALR). Phosphatidylinositol 4-phosphate (PI(4)P) relocates onto autolysosome membrane, which is a key event of ALR. PI(4)P is then converted into phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) by phosphatidylinositol-4-phosphate 5-kinase. Clathrin is subsequently recruited by PI(4,5)P2 and leads to tubule budding of ALR. Yet it is observed that PI(4)P cannot be converted in nanoparticle-treated hepatocytes cells. Exogenous supplement of PI(4,5)P2 suppresses the enlarged autolysosomes in vitro. Abolishment of these enlarged autolysosomes by autophagy inhibitor relieves the hepatotoxicity of UCNs in vivo. The results provide evidence for disrupted ALR in nanoparticle-treated hepatocytes, suggesting that the termination of nanoparticle-induced autophagy is of equal importance as the initiation.


Assuntos
Autofagia , Hepatócitos/citologia , Hepatócitos/metabolismo , Lisossomos/metabolismo , Nanopartículas/química , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Lisossomos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Nanopartículas/toxicidade , Fosfatos de Fosfatidilinositol/metabolismo
17.
Opt Express ; 24(25): 28519-28528, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958496

RESUMO

We realized a polarization-independent split-ratio-tunable optical beam splitter supporting two input and output ports through a stable interferometer. By adjusting the angle of a half-wave plate in the interferometer, we can tune the beam splitter reflectivities for both input ports from 0 to 1, regardless of the input light polarization. High-fidelity polarization-preserving transmission from input to output ports was verified by complete quantum process tomography. Nearly optimal interference effects at the beam splitter with various split ratios were observed by two-photon Hong-Ou-Mandel interference for different input polarization states. Such a beam splitter could find a variety of applications in classical and quantum optical technologies.

18.
Trials ; 17(1): 512, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769284

RESUMO

BACKGROUND: Although Traditional Chinese Medicine (TCM) has been widely used in clinical settings, a major challenge that remains in TCM is to evaluate its efficacy scientifically. This randomized controlled trial aims to evaluate the efficacy and safety of berberine in the treatment of patients with polycystic ovary syndrome. In order to improve the transparency and research quality of this clinical trial, we prepared this statistical analysis plan (SAP). METHODS: The trial design, primary and secondary outcomes, and safety outcomes were declared to reduce selection biases in data analysis and result reporting. We specified detailed methods for data management and statistical analyses. Statistics in corresponding tables, listings, and graphs were outlined. DISCUSSION: The SAP provided more detailed information than trial protocol on data management and statistical analysis methods. Any post hoc analyses could be identified via referring to this SAP, and the possible selection bias and performance bias will be reduced in the trial. TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov, NCT01138930 , registered on 7 June 2010.


Assuntos
Berberina/uso terapêutico , Interpretação Estatística de Dados , Medicamentos de Ervas Chinesas/uso terapêutico , Resistência à Insulina , Síndrome do Ovário Policístico/tratamento farmacológico , Adolescente , Adulto , Berberina/efeitos adversos , Protocolos Clínicos , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Humanos , Modelos Estatísticos , Síndrome do Ovário Policístico/diagnóstico , Projetos de Pesquisa , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
19.
Small ; 12(41): 5759-5768, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593892

RESUMO

Many nanomaterials are reported to disrupt lysosomal function and homeostasis, but how cells sense and then respond to nanomaterial-elicited lysosome stress is poorly understood. Nucleus translocation of transcription factor EB (TFEB) plays critical roles in lysosome biogenesis following lysosome stress induced by starvation. The authors previously reported massive cellular vacuolization, along with autophagy induction, in cells treated with rare earth oxide (REO) nanoparticles. Here, the authors identify these giant cellular vacuoles as abnormally enlarged and alkalinized endo/lysosomes whose formation is dependent on macropinocytosis. This vacuolization causes deactivation of mammalian target of rapamycin (mTOR), a TFEB-interacting kinase that resides on the lysosome membrane. Subsequently, TFEB is dephosphorylated at serine 142 and translocated into cell nucleus. This nucleus translocation of TFEB is observed only in vacuolated cells and it is critical for maintaining lysosome homeostasis after REO nanoparticle treatment, as knock-down of TFEB gene significantly compromises lysosome function and enhances cell death in nanoparticle-treated cells. Our results reveal that cellular vacuolization, which is commonly observed in cells treated with REOs and other nanomaterials, represents a condition of profound lysosome stress, and cells sense and respond to this stress by facilitating mTOR-dependent TFEB nucleus translocation in an effort to restore lysosome homeostasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Lisossomos/metabolismo , Metais Terras Raras/química , Nanopartículas/química , Óxidos/química , Serina-Treonina Quinases TOR/metabolismo , Vacúolos/metabolismo , Álcalis/química , Sobrevivência Celular , Endossomos/metabolismo , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Biológicos , Pinocitose , Transporte Proteico
20.
BMC Complement Altern Med ; 16: 201, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27402016

RESUMO

BACKGROUND: Qili Qiangxin capsule is a standardized Chinese herbal treatment that is commonly used in China for heart failure (HF) alongside conventional medical care. In 2014, Chinese guidelines for the treatment of chronic HF highlighted Qili Qiangxin capsules as a potentially effective medicine. However, there is at present no high quality review to evaluate the effects and safety of Qili Qiangxin for patients with HF. METHODS: We conducted a systematic review and meta-analysis and followed methods described in our registered protocol [PROSPERO registration: CRD42013006106]. We searched 6 electronic databases to identify randomized clinical trials (RCTs) irrespective of blinding or placebo control of Qili Qiangxin used as an adjuvant treatment for HF. RESULTS: We included a total of 129 RCTs published between 2005 and 2015, involving 11,547 patients, aged 18 to 98 years. Meta-analysis showed no significant difference between Qili Qiangxin plus conventional treatment and conventional treatment alone for mortality (RR 0.53, 95 % CI 0.27 to 1.07). However, compared with conventional treatment alone, Qili Qiangxin plus conventional treatment demonstrated a significant reduction in major cardiovascular events (RR 0.46, 95 % CI 0.34 to 0.64) and a significant reduction in re-hospitalization rate due to HF (RR 0.49, 95 % CI 0.38 to 0.64). Qili Qiangxin also showed significant improvement in cardiac function measured by the New York Heart Association scale (RR 1.38, 95 % CI 1.29 to 1.48) and quality of life as measured by Minnesota Living with Heart Failure Questionnaire (MD -8.48 scores, 95 % CI -9.56 to -7.39). There were no reports of serious adverse events relating to Qili Qiangxin administration. The majority of included trials were of poor methodological quality. CONCLUSIONS: When compared with conventional treatment alone, Qili Qiangxin combined with conventional treatment demonstrated a significant effect in reducing cardiovascular events and re-hospitalization rate, though not in mortality. It appeared to significantly improve quality of life in patients with HF and data from RCTs suggested that Qili Qiangxin is likely safe. This data was drawn from low quality trials and the results of this review must therefore be interpreted with caution. Further research is warranted, ideally involving large, prospective, rigorous trials, in order to confirm these findings.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimioterapia Adjuvante , Humanos , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...