Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556489

RESUMO

BACKGROUND: Studies have shown that the release of endogenous glutamate (Glu) participates in lung injury by activating N-methyl-D-aspartate receptor (NMDAR), but the mechanism is still unclear. This study was to investigate the effects and related mechanisms of Glu on the lipid synthesis of pulmonary surfactant (PS) in isolated rat lung tissues. METHODS: The cultured lung tissues of adult SD rats were treated with Glu. The amount of [3H]-choline incorporation into phosphatidylcholine (PC) was detected. RT-PCR and Western blot were used to detect the changes of mRNA and protein expression of cytidine triphosphate: phosphocholine cytidylyltransferase alpha (CCTα), a key regulatory enzyme in PC biosynthesis. Western blot was used to detect the expression of NMDAR1, which is a functional subunit of NMDAR. Specific protein 1 (Sp1) expression plasmids were used. After transfected with Sp1 expression plasmids, the mRNA and protein levels of CCTα were detected by RT-PCR and Western blot in A549 cells. After treated with NMDA and MK-801, the mRNA and protein levels of Sp1 were detected by RT-PCR and Western blot in A549 cells. RESULTS: Glu decreased the incorporation of [3H]-choline into PC in a concentration- and time- dependent manner. Glu treatment significantly reduced the mRNA and protein levels of CCTα in lungs. Glu treatment up-regulated NMDAR1 protein expression, and the NMDAR blocker MK-801 could partially reverse the reduction of [3H]-choline incorporation induced by Glu (10-4 mol/L) in lungs. After transfected with Sp1 plasmid for 30 h, the mRNA and protein expression levels of CCTα were increased and the protein expression of Sp1 was also up-regulated. After A549 cells were treated with NMDA, the level of Sp1 mRNA did not change significantly, but the expression of nucleus protein in Sp1 was significantly decreased, while the expression of cytoplasmic protein was significantly increased. However, MK-801could reverse these changes. CONCLUSIONS: Glu reduced the biosynthesis of the main lipid PC in PS and inhibited CCTα expression by activating NMDAR, which were mediated by the inhibition of the nuclear translocation of Sp1 and the promoter activity of CCTα. In conclusion, NMDAR-mediated Glu toxicity leading to impaired PS synthesis may be a potential pathogenesis of lung injury.


Assuntos
Lesão Pulmonar , Surfactantes Pulmonares , Fator de Transcrição Sp1 , Animais , Ratos , Colina/metabolismo , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Maleato de Dizocilpina , Ácido Glutâmico , N-Metilaspartato , Fosfatidilcolinas , Surfactantes Pulmonares/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119535, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451346

RESUMO

Ferroptosis, a newly discovered type of regulated cell death, has been implicated in numerous human diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease with poor prognosis and limited treatment options. Emerging evidence has linked ferroptosis and glutamate-determined cell fate which is considered a new light on the etiology of pulmonary fibrosis. Here, we observed that N-methyl d-aspartate receptor (NMDAR) activation promoted cell damage and iron deposition in MLE-12 cells in a dose-, time-, and receptor-dependent manner. This mediated substantial Ca2+ influx, upregulated the expression levels of nNOS and IRP1, and affected intracellular iron homeostasis by regulating the expression of iron transport-related proteins (i.e., TFR1, DMT1, and FPN). Excessive iron load promoted the continuous accumulation of total intracellular and mitochondrial reactive oxygen species, which ultimately led to ferroptosis. NMDAR inhibition reduced lung injury and pulmonary fibrosis in bleomycin-induced mice. Bleomycin stimulation upregulated the expression of NMDAR1, nNOS, and IRP1 in mouse lung tissues, which ultimately led to iron deposition via regulation of the expression of various iron metabolism-related genes. NMDAR activation initiated the pulmonary fibrosis process by inducing iron deposition in lung tissues and ferroptosis of alveolar type II cells. Our data suggest that NMDAR activation regulates the expression of iron metabolism-related genes by promoting calcium influx, increasing nNOS and IRP1 expression, and increasing iron deposition by affecting cellular iron homeostasis, ultimately leading to mitochondrial damage, mitochondrial dysfunction, and ferroptosis. NMDAR activation-induced ferroptosis of alveolar type II cells might be a key event to the initiation of pulmonary fibrosis.


Assuntos
Ferroptose , Fibrose Pulmonar , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Ferroptose/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Pulmão/metabolismo , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Ferro/metabolismo
3.
Medicine (Baltimore) ; 102(26): e34053, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390232

RESUMO

PURPOSE: To take a systematic bibliometric analysis and generate the knowledge mapping of diabetic foot research, basing on big data from Web of Science Core Collection (WoSCC) database. METHODS: Two authors retrieved the WoSCC independently, to obtain publications in field of diabetic foot. CiteSpace was used to detect the co-occurrence relationships of authors, keywords, institutions, and countries/regions, co-citation relationships of authors, references, and journals, and distribution of WoS category. RESULTS: A total of 10,822 documents were included, with 39,541 authors contributed to this field. "Armstrong DG," "Lavery LA," and "Lipsky BA" are the top 3 productive authors, and "Armstrong DG," "Boulton AJM," and "Lavery LA" were most commonly cited. The United States, England and China are the most productive countries, and Univ Washington, Univ Manchester and Harvard Univ published the largest quantity of articles. "Diabetes Care," "Diabetic Med," and "Diabetologia" are the most frequently cited journals, providing the greatest knowledge base. Clustering analysis of keywords co-occurrence map presented the following hotspots: #1 diabetic wound healing, #2 diabetic polyneuropathy, #3 plantar pressure, #4 diabetic foot infection, #5 endovascular treatment, and #6 hyperbaric oxygen therapy. CONCLUSION: This study performed a global overview of diabetic foot research using bibliometric and visualization methods, which would provide helpful references for researchers focusing on this area to capture the future trend.


Assuntos
Diabetes Mellitus , Pé Diabético , Neuropatias Diabéticas , Humanos , Bibliometria , Big Data , China
4.
Ann Transl Med ; 10(11): 642, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35813315

RESUMO

Background: A large number of our previous studies showed that endogenous glutamate and N-methyl-D-aspartate receptor (NMDAR) activation may be involved in various types of acute lung injury, airway inflammation, asthma, and pulmonary fibrosis. In animal models, the transplantation of exogenous bone marrow mesenchymal stem cells (BM-MSCs) is the most promising treatment for idiopathic pulmonary fibrosis. However, there are limited reports on the status of endogenous BM-MSCs in the process of bleomycin-induced pulmonary fibrosis in animals. Methods: We constructed a mouse model of bleomycin-induced pulmonary fibrosis. In vitro, the senescence model of BM-MSCs was constructed with hydrogen peroxide and high concentration of N-methyl-D-aspartate (NDMA). The changes in aging-related indexes were detected by senescence associated beta-galactosidase (SA-ß-gal) staining, western blot, flow cytometry and real time-PCR. The epithelial-mesenchymal transformation (EMT) changes of mouse lung epithelial cells (MLE-12) co-cultured with senescent BM-MSCs were detected by immunofluorescence and western blotting. Results: We observed that endogenous BM-MSCs senescence occurs during bleomycin-induced pulmonary fibrosis in mice, and the model group had a higher expression level of the NMDAR subunit than the control group. We observed a significant increase in NMDAR subunit expression in a hydrogen peroxide-induced senescent cell model in vitro. BM-MSCs showed senescence-related phenotype and cell cycle arrest after high concentration of NMDA treatment. At the same time, the expression levels of the classic Wingless and int-1 (Wnt) pathway protein ß-cantenin and downstream cyclin D1 also changed. In the co-culture of aged BM-MSCs and MLE-12 cells, EMT can be promoted in MLE-12 cells, and MK-801 can partially antagonize the occurrence of EMT. The NMDAR antagonist can partially prevent the above phenomenon. Conclusions: High concentrations of NMDA can promote senescence of BM-MSCs. NMDAR blockers may inhibit endogenous BM-MSCs aging through the WNT signaling pathway, thereby reducing the effect of bleomycin-induced pulmonary fibrosis.

5.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328308

RESUMO

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease of swine with high morbidity and mortality that negatively affects the pig industry worldwide, in particular in China. Soon after the endocytosis of CSFV, the virus makes full use of the components of host cells to complete its life cycle. The endocytosis sorting complex required for transport (ESCRT) system is a central molecular machine for membrane protein sorting and scission in eukaryotic cells that plays an essential role in many physiological metabolic processes, including invasion and egress of envelope viruses. However, the molecular mechanism that ESCRT uses to regulate the replication of CSFV is unknown. In this study, we demonstrated that the ESCRT-I complex Tsg101 protein participates in clathrin-mediated endocytosis of CSFV and is also involved in CSFV trafficking. Tsg101 assists the virus in entering the host cell through the late endosome (Rab7 and Rab9) and finally reaching the lysosome (Lamp-1). Interestingly, Tsg101 is also involved in the viral replication process by interacting with nonstructural proteins 4B and 5B of CSFV. Finally, confocal microscopy showed that the replication complex of Tsg101 and double-stranded RNA (dsRNA) or NS4B and NS5B protein was close to the endoplasmic reticulum (ER), not the Golgi, in the cytoplasm. Collectively, our finding highlights that Tsg101 regulates the process of CSFV entry and replication, indicating that the ESCRT plays an important role in the life cycle of CSFV. Thus, ESCRT molecules could serve as therapeutic targets to combat CSFV infection.IMPORTANCE CSF, caused by CSFV, is a World Organization for Animal Health (OIE) notifiable disease and causes significant financial losses to the pig industry globally. The ESCRT machinery plays an important regulatory role in several members of the genera Flavivirus and Hepacivirus within the family Flaviviridae, such as hepatitis C virus, Japanese encephalitis virus, and dengue virus. Previous reports have shown that assembling and budding of these viruses require ESCRT. However, the role of ESCRT in Pestivirus infection remains to be elucidated. We determined the molecular mechanisms of the regulation of CSFV infection by the major subunit Tsg101 of ESCRT-I. Interestingly, Tsg101 plays an essential regulatory role in both clathrin-mediated endocytosis and genome replication of CSFV. Overall, the results of this study provide further insights into the molecular function of ESCRT-I complex protein Tsg101 during CSFV infection, which may serve as a molecular target for pestivirus inhibitors.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Transcrição/metabolismo , Internalização do Vírus , Replicação Viral , Animais , Linhagem Celular , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Lisossomos/virologia , RNA Viral/metabolismo , Suínos , Fatores de Transcrição/genética , Proteínas não Estruturais Virais/metabolismo , Compartimentos de Replicação Viral/metabolismo
6.
Vet Microbiol ; 238: 108436, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31648726

RESUMO

The level of cholesterol in host cells has been demonstrated to affect viral infection. Our previous studies showed that cholesterol-rich membrane rafts mediated the entry of classical swine fever virus (CSFV) into PK-15 or 3D4/21 cells, but the role of cholesterol post entry was still not clear. In this study, we found that CSFV replication before fusion was affected when the cholesterol trafficking in infected cells was disrupted using a cholesterol transport inhibitor, U18666A. Our data showed that U18666A affected both the fusion and replication steps in the life cycle of the virus, but not its binding and entry steps. The subsequent experiments confirmed that niemann-pick C1 (NPC1), a lysosomal membrane protein that helps cholesterol to leave the lysosome, was affected by U18666A, which led to the accumulation of cholesterol in lysosomes and inhibition of CSFV replication. Imipramine, a cationic hydrophobic amine similar to U18666A, also inhibited CSFV replication via similar mechanism. Surprisingly, the antiviral effect of U18666A was restored by the histone deacetylase inhibitor (HDACi), Vorinostat, which suggested that HDACi reverted the dysfunction of NPC1, and intra-cellular cholesterol accumulation disappeared and CSFV replicability resumed. Together, these data indicated that CSFV transformed from early endosome and late endosome into lysosome after endocytosis for further replication and that U18666A was a potential drug candidate for anti-pestivirus treatment.


Assuntos
Androstenos/farmacologia , Antivirais/farmacologia , Colesterol/metabolismo , Vírus da Febre Suína Clássica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Suínos
7.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769350

RESUMO

The members of Flaviviridae utilize several endocytic pathways to enter a variety of host cells. Our previous work showed that classical swine fever virus (CSFV) enters porcine kidney (PK-15) cells through a clathrin-dependent pathway that requires Rab5 and Rab7. The entry mechanism for CSFV into other cell lines remains unclear, for instance, porcine alveolar macrophages (3D4/21 cells). More importantly, the trafficking of CSFV within endosomes controlled by Rab GTPases is unknown in 3D4/21 cells. In this study, entry and postinternalization of CSFV were analyzed using chemical inhibitors, RNA interference, and dominant-negative (DN) mutants. Our data demonstrated that CSFV entry into 3D4/21 cells depends on caveolae, dynamin, and cholesterol but not clathrin or macropinocytosis. The effects of DN mutants and knockdown of four Rab proteins that regulate endosomal trafficking were examined on CSFV infection, respectively. The results showed that Rab5, Rab7, and Rab11, but not Rab9, regulate CSFV endocytosis. Confocal microscopy showed that virus particles colocalize with Rab5, Rab7, or Rab11 within 30 min after virus entry and further with lysosomes, suggesting that after internalization CSFV moves to early, late, and recycling endosomes and then into lysosomes before the release of the viral genome. Our findings provide insights into the life cycle of pestiviruses in macrophages.IMPORTANCE Classical swine fever, is caused by classical swine fever virus (CSFV). The disease is notifiable to World Organisation for Animal Health (OIE) in most countries and causes significant financial losses to the pig industry globally. Understanding the processes of CSFV endocytosis and postinternalization will advance our knowledge of the disease and provide potential novel drug targets against CSFV. With this objective, we used systematic approaches to dissect these processes in CSFV-infected 3D4/21 cells. The data presented here demonstrate for the first time to our knowledge that CSFV is able to enter cells via caveola-mediated endocytosis that requires Rab5, Rab7 and Rab11, in addition to the previously described classical clathrin-dependent pathway that requires Rab5 and Rab7. The characterization of CSFV entry will further promote our current understanding of Pestivirus cellular entry pathways and provide novel targets for antiviral drug development.


Assuntos
Cavéolas/metabolismo , Vírus da Febre Suína Clássica/metabolismo , Endocitose , Macrófagos Alveolares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Cavéolas/virologia , Vírus da Febre Suína Clássica/genética , Macrófagos Alveolares/virologia , Suínos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
8.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343573

RESUMO

Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S-transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B.IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo, but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Animais , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Proteínas de Resistência a Myxovirus/genética , Suínos , Proteínas não Estruturais Virais/genética
9.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724764

RESUMO

During infection Japanese encephalitis virus (JEV) generally enters host cells via receptor-mediated clathrin-dependent endocytosis. The trafficking of JEV within endosomes is controlled by Rab GTPases, but which Rab proteins are involved in JEV entry into BHK-21 cells is unknown. In this study, entry and postinternalization of JEV were analyzed using biochemical inhibitors, RNA interference, and dominant negative (DN) mutants. Our data demonstrate that JEV entry into BHK-21 cells depends on clathrin, dynamin, and cholesterol but not on caveolae or macropinocytosis. The effect on JEV infection of dominant negative (DN) mutants of four Rab proteins that regulate endosomal trafficking was examined. Expression of DN Rab5 and DN Rab11, but not DN Rab7 and DN Rab9, significantly inhibited JEV replication. These results were further tested by silencing Rab5 or Rab11 expression before viral infection. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab11 within 15 min after virus entry, suggesting that after internalization JEV moves to early and recycling endosomes before the release of the viral genome. Our findings demonstrate the roles of Rab5 and Rab11 on JEV infection of BHK-21 cells through the endocytic pathway, providing new insights into the life cycle of flaviviruses.IMPORTANCE Although Japanese encephalitis virus (JEV) utilizes different endocytic pathways depending on the cell type being infected, the detailed mechanism of its entry into BHK-21 cells is unknown. Understanding the process of JEV endocytosis and postinternalization will advance our knowledge of JEV infection and pathogenesis as well as provide potential novel drug targets for antiviral intervention. With this objective, we used systematic approaches to dissect this process. The results show that entry of JEV into BHK-21 cells requires a low-pH environment and that the process occurs through dynamin-, actin-, and cholesterol-dependent clathrin-mediated endocytosis that requires Rab5 and Rab11. Our work provides a detailed picture of the entry of JEV into BHK-21 cells and the cellular events that follow.


Assuntos
Clatrina/metabolismo , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Endocitose/fisiologia , Internalização do Vírus , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Caveolinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetinae , Dinaminas/metabolismo , Encefalite Japonesa/patologia , Encefalite Japonesa/virologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...