Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibodies (Basel) ; 13(2)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38920969

RESUMO

Chimeric antigen receptor (CAR) T cell therapy shows promise in treating malignant tumors. However, the use of human epidermal growth factor receptor-2 (HER2) CAR-T cells carries the risk of severe toxicity, including cytokine release syndrome, due to their "on-target off-tumor" recognition of HER2. Enhancing the quality and functionality of HER2 CARs could greatly improve the therapeutic potential of CAR-T cells. In this study, we developed a novel anti-HER2 monoclonal antibody, Ab8, which targets domain III of HER2, distinct from the domain IV recognition of trastuzumab. Although two anti-HER2 mAbs induced similar levels of antibody-dependent cellular cytotoxicity, trastuzumab-based CAR-T cells exhibited potent antitumor activity against HER2-positive cancer cells. In conclusion, our findings provide scientific evidence that antibody recognition of the membrane-proximal domain promotes the anti-tumor response of HER2-specific CAR-T cells.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38914874

RESUMO

(20 S)-Ginsenoside Rh2 is a natural saponin derived from Panax ginseng Meyer (P. ginseng), which showed significantly potent anticancer properties. However, its low water solubility and bioavailability strongly restrict its pharmaceutical applications. The aim of current research is to develop a modified (20 S)-Ginsenoside Rh2 formulation with high solubility, dissolution rate and bioavailability by combined computational and experimental methodology. The "PharmSD" model was employed to predict the optimal polymer for (20 S)-Ginsenoside Rh2 solid dispersion formulations. The solubility of (20 S)-Ginsenoside Rh2 in various polymers was assessed, and the optimal ternary solid dispersion was evaluated across different dissolution mediums. Characterization techniques included the Powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). Molecular dynamics simulations were employed to elucidate the formation mechanism of the solid dispersion and the interactions among active pharmaceutical ingredient (API) and excipient molecules. Cell and animal experiments were conducted to evaluate the in vivo performance of the modified formulation. The "PharmSD" solid dispersion model identified Gelucire 44/14 as the most effective polymer for enhancing the dissolution rate of Rh2. Subsequent experiment also confirmed that Gelucire 44/14 outperformed the other selected polymers. Moreover, the addition of the third component, sodium dodecyl sulfate (SDS), in the ternary solid dispersion formulation significantly amplified dissolution rates than the binary systems. Characterization experiments revealed that the API existed in an amorphous state and interacted via hydrogen bonding with SDS and Gelucire. Moreover, molecular modeling results provided additional evidence of hydrogen bonding interactions between the API and excipient molecules within the optimal ternary solid dispersion. Cell experiments demonstrated efflux ratio (EfR) of Rh2 ternary solid dispersion was lower than that of pure Rh2. In vivo experiments revealed that the modified formulation substantially improved the absorption of Rh2 in rats. Our research successfully developed an optimal ternary solid dispersion for Rh2 with high solubility, dissolution rate and bioavailability by integrated computational and experimental tools. The combination of Artificial Intelligence (AI) technology and molecular dynamics simulation is a wise way to support the future formulation development.

3.
Int Immunopharmacol ; 134: 112222, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728881

RESUMO

Cardiovascular disease is currently the number one cause of death endangering human health. There is currently a large body of research showing that the development of cardiovascular disease and its complications is often accompanied by inflammatory processes. In recent years, epitranscriptional modifications have been shown to be involved in regulating the pathophysiological development of inflammation in cardiovascular diseases, with 6-methyladenine being one of the most common RNA transcriptional modifications. In this review, we link different cardiovascular diseases, including atherosclerosis, heart failure, myocardial infarction, and myocardial ischemia-reperfusion, with inflammation and describe the regulatory processes involved in RNA methylation. Advances in RNA methylation research have revealed the close relationship between the regulation of transcriptome modifications and inflammation in cardiovascular diseases and brought potential therapeutic targets for disease diagnosis and treatment. At the same time, we also discussed different cell aspects. In addition, in the article we also describe the different application aspects and clinical pathways of RNA methylation therapy. In summary, this article reviews the mechanism, regulation and disease treatment effects of m6A modification on inflammation and inflammatory cells in cardiovascular diseases in recent years. We will discuss issues facing the field and new opportunities that may be the focus of future research.


Assuntos
Doenças Cardiovasculares , Epigênese Genética , Inflamação , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Inflamação/genética , Animais , Adenina/análogos & derivados , Transcriptoma , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA