Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(2): 209-217, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32612277

RESUMO

Eleutheroside B (EB) is the main active constituent derived from the Chinese herb Acanthopanax senticosus (AS) that has been reported to possess cardioprotective effects. In this study we investigated the effects of EB on cardiac electrophysiology and its suppression on atrial fibrillation (AF). Whole-cell recording was conducted in isolated rabbit atrial myocytes. The intracellular calcium ([Ca2+]i) concentration was measured using calcium indicator Fura-2/AM fluorescence. Monophasic action potential (MAP) and electrocardiogram (ECG) synchronous recordings were conducted in Langendorff-perfused rabbit hearts using ECG signal sampling and analysis system. We showed that EB dose-dependently inhibited late sodium current (INaL), transient sodium current (INaT), and sea anemone toxin II (ATX II)-increased INaL with IC50 values of 167, 1582, and 181 µM, respectively. On the other hand, EB (800 µM) did not affect L-type calcium current (ICaL), inward rectifier potassium channel current (IK), and action potential duration (APD). Furthermore, EB (300 µM) markedly decreased ATX II-prolonged the APD at 90% repolarization (APD90) and eliminated ATX II-induced early afterdepolarizations (EADs), delayed afterdepolarizations (DADs), and triggered activities (TAs). Moreover, EB (200 µM) significantly suppressed ATX II-induced Na+-dependent [Ca2+]i overload in atrial myocytes. In the Langendorff-perfused rabbit hearts, application of EB (200 µM) or TTX (2 µM) substantially decreased ATX II-induced incidences of atrial fibrillation (AF), ventricular fibrillation (VF), and heart death. These results suggest that augmented INaL alone is sufficient to induce AF, and EB exerts anti-AF actions mainly via blocking INaL, which put forward the basis of pharmacology for new clinical application of EB.


Assuntos
Fibrilação Atrial/prevenção & controle , Cardiotônicos/farmacologia , Glucosídeos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fenilpropionatos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cardiotônicos/administração & dosagem , Venenos de Cnidários/toxicidade , Relação Dose-Resposta a Droga , Eletrocardiografia , Glucosídeos/administração & dosagem , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Fenilpropionatos/administração & dosagem , Coelhos , Bloqueadores dos Canais de Sódio/administração & dosagem , Bloqueadores dos Canais de Sódio/farmacologia
2.
Front Physiol ; 11: 978, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973546

RESUMO

Increasing evidence shows that Curcumin (Cur) has a protective effect against cardiovascular diseases. However, the role of Cur in the electrophysiology of cardiomyocytes is currently not entirely understood. Therefore, the present study was conducted to investigate the effects of Cur on the action potential and transmembrane ion currents in rabbit ventricular myocytes to explore its antiarrhythmic property. The whole-cell patch clamp was used to record the action potential and ion currents, while the multichannel acquisition and analysis system was used to synchronously record the electrocardiogram and monophasic action potential. The results showed that 30 µmol/L Cur shortened the 50 and 90% repolarization of action potential by 17 and 7%, respectively. In addition, Cur concentration dependently inhibited the Late-sodium current (I Na.L), Transient-sodium current (I Na.T), L-type calcium current (I Ca.L), and Rapidly delayed rectifying potassium current (I Kr), with IC50 values of 7.53, 398.88, 16.66, and 9.96 µmol/L, respectively. Importantly, the inhibitory effect of Cur on I Na.L was 52.97-fold higher than that of I Na.T. Moreover, Cur decreased ATX II-prolonged APD, suppressed the ATX II-induced early afterdepolarization (EAD) and Ca2+-induced delayed afterdepolarization (DAD) in ventricular myocytes, and reduced the occurrence and average duration of ventricular tachycardias and ventricular fibrillations induced by ischemia-reperfusion injury. In conclusion, Cur inhibited I Na.L, I Na.T, I Ca.L, and I Kr; shortened APD; significantly suppressed EAD and DAD-like arrhythmogenic activities at the cellular level; and exhibited antiarrhythmic effect at the organ level. It is first revealed that Cur is a multi-ion channel blocker that preferentially blocks I Na.L and may have potential antiarrhythmic property.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA