Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(12): 21400-21411, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859494

RESUMO

Multi-mode multiplexing optical interconnection (MMOI) has been widely used as a new technology that can significantly expand communication bandwidth. However, the constant-on state of each channel in the existing MMOI systems leads to serious interference for receivers when extracting and processing information, necessitating introducing real-time selective-on function for each channel in MMOI systems. To achieve this goal, combining several practical requirements, we propose a real-time selective mode switch based on phase-change materials, which can individually tune the passing/blocking of different modes in the bus waveguide. We utilize our proposed particle swarm optimization algorithm with embedded neural network surrogate models (NN-in-PSO) to design this mode switch. The proposed NN-in-PSO significantly reduces the optimization cost, enabling multi-dimensional simultaneous optimization. The resulting mode switch offers several advantages, including ultra-compactness, rapid tuning, nonvolatility, and large extinction ratio. Then, we demonstrate the real-time channel selection function by integrating the mode switch into the MMOI system. Finally, we prove the fabricating robustness of the proposed mode switch, which paves the way for its large-scale application.

2.
Opt Express ; 32(6): 8506-8519, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571108

RESUMO

In this paper, a 1 × 2 photonic switch is designed based on a silicon-on-insulator (SOI) platform combined with the phase change material (PCM), Sb2S3, assisted by the direct binary search (DBS) algorithm. The designed photonic switch exhibits an impressive operating bandwidth ranging from 1450 to 1650 nm. The device has an insertion loss (IL) from 0.44 dB to 0.70 dB (of less than 0.7 dB) and cross talk (CT) from -26 dB to -20 dB (of less than -20 dB) over an operating bandwidth of 200 nm, especially an IL of 0.52 dB and CT of -24 dB at 1550 nm. Notably, the device is highly compact, with footprints of merely 3 × 4 µm2. Furthermore, we have extended the device's functionality for multifunctional operation in the C-band that can serve as both a 1 × 2 photonic switch and a 3 dB photonic power splitter. In the photonic switch mode, the device demonstrates an IL of 0.7 dB and a CT of -13.5 dB. In addition, when operating as a 3 dB photonic power splitter, the IL is less than 0.5 dB.

3.
Opt Express ; 32(6): 9456-9467, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571180

RESUMO

Traditional optical information recognition (OIR), particle capture and manipulation require many optical devices or mechanical moving system components to achieve a specific function, which is difficult to achieve integration. This paper proposes a new method to realize these functions by using multi-focus metalens combining spectrum and polarization selection. The design incorporates three spectral bands, namely 500 nm, 580 nm, and 660 nm, within the visible light range. Additionally, it utilizes either left-handed or right-handed circularly polarized (LCP/RCP) light, resulting in six distinct focus focusing effects on a single focal plane. By analyzing the normalized light intensity (NLI) at the corresponding focus position, the OIR of any wavelength and polarization detection in the design can be realized, and the particle capture at different focusing positions can be realized. Our work can provide a new idea for the high integration of on-chip light recognition and operation and inspire the design of a highly integrated optical system with a smaller size and more substantial function.

4.
Biochem Genet ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379038

RESUMO

Propofol has been found to have a protective effect against spinal cord injury (SCI). However, the underlying molecular mechanism of propofol regulating SCI process remains unclear. In this study, lipopolysaccharide (LPS)-induced PC12 cells were used to build SCI cell models. Cell viability and apoptosis were determined by cell counting kit 8 assay, flow cytometry, and caspase-3 activity detection. The protein levels of apoptosis-related markers and TNFAIP3 interacting protein 2 (TNIP2) were assessed using western blot analysis, and the levels of inflammatory factors were detected using ELISA. Cell oxidative stress was evaluated by measuring malondialdehyde (MDA) and reactive oxygen species (ROS) levels. The expression of microRNA (miR)-672-3p was examined by quantitative real-time PCR. SCI rat models were constructed to assess the effect of propofol in vivo. We found that propofol treatment promoted viability, while inhibited apoptosis, inflammation and oxidative stress of LPS-induced PC12 cells. Propofol decreased miR-672-3p expression, and miR-672-3p overexpression eliminated the inhibiting effect of propofol on LPS-induced PC12 cell injury. Besides, miR-672-3p targeted TNIP2, and TNIP2 knockdown reversed the protective effect of miR-672-3p inhibitor or propofol against LPS-induced PC12 cell injury. In vivo experiments, propofol treatment enhanced the motor function recovery and inhibited apoptosis of SCI rat models. In conclusion, propofol increased TNIP2 level by reducing miR-672-3p expression, thereby alleviating LPS-induced PC12 cell injury and improving the motor function of SCI rat models.

5.
Pharm Biol ; 62(1): 1-12, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38084911

RESUMO

CONTEXT: Shenxiang Suhe pill (SXSH), a traditional Chinese medicine, is clinically effective against coronary heart disease, but the mechanism of cardiac-protective function is unclear. OBJECTIVE: We investigated the cardiac-protective mechanism of SXSH via modulating gut microbiota and metabolite profiles. MATERIALS AND METHODS: Sprague-Dawley (SD) male rats were randomly divided into 6 groups (n = 8): Sham, Model, SXSH (Low, 0.063 g/kg; Medium, 0.126 g/kg; High, 0.252 g/kg), and Ato (atorvastatin, 20 mg/kg). Besides the Sham group, rats were modelled with acute myocardial infarction (AMI) by ligating the anterior descending branch of the left coronary artery (LAD). After 3, 7, 14 days' administration, ultrasound, H&E staining, serum enzymic assay, 16S rRNA sequencing were conducted to investigate the SXSH efficacy. Afterwards, five groups of rats: Sham, Model, Model-ABX (AMI with antibiotics-feeding), SXSH (0.126 g/kg), SXSH-ABX were administrated for 14 days to evaluate the gut microbiota-dependent SXSH efficacy, and serum untargeted metabolomics test was performed. RESULTS: 0.126 g/kg of SXSH intervention for 14 days increased ejection fraction (EF, 78.22%), fractional shortening (FS, 109.07%), and aortic valve flow velocities (AV, 21.62%), reduced lesion area, and decreased serum LDH (8.49%) and CK-MB (10.79%). Meanwhile, SXSH upregulated the abundance of Muribaculaceae (199.71%), Allobaculum (1744.09%), and downregulated Lactobacillus (65.51%). The cardiac-protective effect of SXSH was disrupted by antibiotics administration. SXSH altered serum metabolites levels, such as downregulation of 2-n-tetrahydrothiophenecarboxylic acid (THTC, 1.73%), and lysophosphatidylcholine (lysoPC, 4.61%). DISCUSSION AND CONCLUSION: The cardiac-protective effect and suggested mechanism of SXSH could provide a theoretical basis for expanding its application in clinic.


Assuntos
Microbioma Gastrointestinal , Infarto do Miocárdio , Ratos , Masculino , Animais , Ratos Sprague-Dawley , RNA Ribossômico 16S , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Antibacterianos/farmacologia
6.
Opt Express ; 31(22): 35653-35669, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017732

RESUMO

In recent years, structural color has developed rapidly due to its distinct advantages, such as low loss, high spatial resolution and environmental friendliness. Various inverse design methods have been extensively investigated to efficiently design optical structures. However, the optimization method for the inverse design of structural color remains a formidable challenge. Traditional optimization approaches, such as genetic algorithms require time-consuming repetitions of structural simulations. Deep learning-assisted design necessitates prior simulations and large amounts of data, making it less efficient for systems with a small number of features. This study proposes a tensor completion algorithm capable of swiftly and accurately predicting missing datasets based on partially obtained datasets to assist in structural color design. Transforming the complex physical problem of structural color design into a spatial structure relationship problem linking geometric parameters and spectral data. The method utilizes tensor multilinear data analysis to effectively capture the complex relationships associated with geometric parameters and spectral data in higher-order data. Numerical and experimental results demonstrate that the algorithm exhibits high reliability in terms of speed and accuracy for diverse structures, datasets of varying sizes, and different materials, significantly enhancing design efficiency. The proposed algorithm offers a viable solution for inverse design problems involving complex physical systems, thereby introducing a novel approach to the design of photonic devices. Additionally, numerical experiments illustrate that the structural color of cruciform resonators with diamond can overcome the high loss issues observed in traditional dielectric materials within the blue wavelength region and enhance the corrosion resistance of the structure. We achieve a wide color gamut and a high-narrow reflection spectrum nearing 1 by this structure, and the theoretical analysis further verifies that diamond holds great promise in the realm of optics.

7.
Opt Express ; 31(18): 29235-29244, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710728

RESUMO

In this work, we use the inverse design method to design three-channel and four-channel dual-mode waveguide crossings with the design regions of 4.32 µm-wide regular hexagon and 6.68 µm-wide regular octagon, respectively. Based on the highly-symmetric structures, the fundamental transverse electric (TE0) and TE1 modes propagate through the waveguide crossings efficiently. Moreover, the devices are practically fabricated and experimentally characterized. The measured insertion losses and crosstalks of the three-channel and dual-mode waveguide crossing for both the TE0 and TE1 modes are less than 1.8 dB and lower than -18.4 dB from 1540 nm to 1560 nm, respectively. The measured insertion losses of the four-channel and dual-mode waveguide crossing for the TE0 and TE1 modes are less than 1.8 dB and 2.5 dB from 1540 nm to 1560 nm, respectively, and the measured crosstalks are lower than -17.0 dB. In principle, our proposed scheme can be extended to waveguide crossing with more channels and modes.

8.
Opt Express ; 31(17): 27393-27406, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710816

RESUMO

In this work, we design, fabricate, and characterize a different-mode (waveguide-connected) power splitter ((W)PS) by what we believe to be a novel multi-dimension direct-binary-search algorithm that can significantly balance the device performance, time cost, and fabrication robustness by searching the state-dimension, rotation-dimension, shape-dimension, and size-dimension parameters. The (W)PS can simultaneously generate the fundamental transverse electric (TE0) and TE1 mode with the 1:1 output balance. Compared with the PS, the WPS can greatly shorten the adiabatic taper length between the single-mode waveguide and the grating coupler. The measured results of the different-mode (W)PS indicate that the insertion loss and crosstalk are less than 0.9 (1.3) dB and lower than -17.8 (-14.9) dB from 1540 nm to 1560 nm. In addition, based on the tunable tap couplers, the different-mode (W)PS can be extended to multiple output ports with different modes and different transmittances.

9.
Opt Express ; 31(11): 18555-18566, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381565

RESUMO

Blindly increasing the channels of the mode (de)multiplexer on the single-layer chip can cause the device structure to be too complex to optimize. The three-dimensional (3D) mode division multiplexing (MDM) technology is a potential solution to extend the data capacity of the photonic integrated circuit by assembling the simple devices in the 3D space. In our work, we propose a 16 × 16 3D MDM system with a compact footprint of about 100 µm × 5.0 µm × 3.7 µm. It can realize 256 mode routes by converting the fundamental transverse electric (TE0) modes in arbitrary input waveguides into the expected modes in arbitrary output waveguides. To illustrate its mode-routing principle, the TE0 mode is launched in one of the sixteen input waveguides, and converted into corresponding modes in four output waveguides. The simulated results indicate that the ILs and CTs of the 16 × 16 3D MDM system are less than 3.5 dB and lower than -14.2 dB at 1550 nm, respectively. In principle, the 3D design architecture can be scaled to realize arbitrary network complexity levels.

10.
Opt Express ; 31(5): 8668-8681, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859977

RESUMO

Metalens with extended depth of focus (EDOF) can extend the mapping area of the image, which leads to novel applications in imaging and microscopy. Since there are still some disadvantages for existing EDOF metalenses based on forward design, such as asymmetric point spread function (PSF) and non-uniformly distributed focal spot, which impair the quality of images, we propose a double-process genetic algorithm (DPGA) optimization to inversely design the EDOF metalens for addressing these drawbacks. By separately adopting different mutation operators in successive two genetic algorithm (GA) processes, DPGA exhibits significant advantages in searching for the ideal solution in the whole parameter space. Here, the 1D and 2D EDOF metalenses operating at 980 nm are separately designed via this method, and both of them exhibit significant depth of focus (DOF) improvement to that of conventional focusing. Furthermore, a uniformly distributed focal spot can be maintained well, which can guarantee stable imaging quality along the longitudinal direction. The proposed EDOF metalenses have considerable potential applications in biological microscopy and imaging, and the scheme of DPGA can be promoted to the inverse design of other nanophotonics devices.

11.
Opt Express ; 31(26): 44811-44822, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178540

RESUMO

With the development of camouflage technology, single camouflage technology can no longer adapt to existing environments, and multispectral camouflage has attracted much research focus. However, achieving camouflage compatibility across different bands remains challenging. This study proposes a multispectral camouflage metamaterial structure using a particle swarm optimization algorithm, which exhibits multifunctional compatibility in the visible and infrared bands. In the visible band, the light absorption rate of the metamaterial structure exceeds 90%. In addition, color camouflage can be achieved by modifying the top cylindrical nanostructure to display different colors. In the infrared band, the metamaterial structure can achieve three functions: dual-band infrared camouflage (3-5 µm and 8-14 µm), laser stealth (1.06, 1.55, and 10.6 µm), and heat dissipation (5-8 µm). This structure exhibits lower emissivity in both the 3-5-µm (ɛ=0.18) and 8-14-µm (ɛ=0.27) bands, effectively reducing the emissivity in the atmospheric window band. The structure has an absorption rate of 99.7%, 95.5%, and 95% for 1.06, 1.55, and 10.6 µm laser wavelengths, respectively. Owing to its high absorptivity, laser stealth is achieved. Simultaneously, considering the heat dissipation requirements of metamaterial structures, the structural emissivity is 0.7 in the non-atmospheric window (5-8 µm), and the heat can be dissipated through air convection. Therefore, the designed metamaterial structure can be used in military camouflage and industrial applications.

12.
Dis Markers ; 2022: 9715704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212173

RESUMO

Objective: The objective of this study is to investigate the effect of dexmedetomidine on postoperative pain and recovery time in obese patients. Methods: A total of 100 obese patients with body mass index (BMI) ≥ 30 kg/m2 who underwent laparoscopic sleeve gastrectomy under general anesthesia in our hospital from January 2019 to December 2021 were included and assigned into DEX group (dexmedetomidine group) and NS group (normal saline group). The bariatric surgery patients who were given normal saline pump were the NS group (n = 50), and the bariatric surgery patients who were given the dexmedetomidine pump were the DEX group (n = 50). The patients in the DEX group were given continuous intravenous infusion of dexmedetomidine before, during, and after induction of anesthesia at a dose of 0.4 µg. kg-1. h-1, 0.4 µg·kg-1. h-1, 0.2 µg·kg-1. h-1, respectively. The NS group was infused with the same volume of normal saline for the same time. The two groups of patients were treated with the same anesthesia induction and maintenance program. By comparing the operation, anesthesia, postoperative extubation, and recovery time of the two groups of patients, the effect of dexmedetomidine on the postoperative recovery time of obese patients was analyzed. Visual analogue scale (VAS) and adverse reactions were compared to analyze the effect of dexmedetomidine on postoperative pain in obese patients. Results: The operation, anesthesia, postoperative extubation, and recovery time of the DEX group were significantly lower than those of the NS group, whereas the VAS and adverse reactions were significantly lower than those in the NS group (P < 0.05). Conclusion: An appropriate dose of dexmedetomidine in bariatric surgery for morbidly obese patients can effectively shorten the recovery time and extubation time of patients, reduce postoperative pain and the incidence of adverse reactions, and is worthy of clinical application. Dexmedetomidine 2 µg/kg has promising anesthesia benefits in bariatric surgery of obese patients, can provide favorable analgesia and quality of recovery, help reduce the degree of stress response of patients, and does not increase the risk of adverse events. However, this study has certain limitations, so physicians should tailor the dosage according to the patient's physical condition in clinical practice.


Assuntos
Dexmedetomidina , Obesidade Mórbida , Dexmedetomidina/uso terapêutico , Humanos , Obesidade Mórbida/cirurgia , Medição da Dor/efeitos adversos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Solução Salina/uso terapêutico
13.
Opt Express ; 30(11): 18250-18263, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221630

RESUMO

Infrared (IR) stealth with thermal management is highly desirable in military applications and astronomy. However, developing selective IR emitters with properties suitable for IR stealth and thermal management is challenging. In this study, we present the theoretical framework for a selective emitter based on an inverse-designed metasurface for IR stealth with thermal management. The emitter comprises an inverse-designed gold grating, a Ge2Sb2Te5 (GST) dielectric layer, and a gold reflective layer. The hat-like function, which describes an ideal thermal selective emitter, is involved in the inverse design algorithm. The emitter exhibits high performance in IR stealth with thermal management, with the low emissivity (ɛ3-5 µm =0.17; ɛ8-14 µm =0.16) for dual-band atmospheric transmission windows and high emissivity (ɛ5-8 µm =0.85) for non-atmospheric windows. Moreover, the proposed selective emitter can realize tunable control of thermal radiation in the wavelength range of 3-14 µm by changing the crystallization fraction of GST. In addition, the polarization-insensitive structure supports strong selective emission at large angles (60°). Thus, the selective emitter has potential for IR stealth, thermal imaging, and mid-infrared multifunctional equipment.

14.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234401

RESUMO

In this paper, we design a multifunctional micro-nano device with a hybrid metamaterial-waveguide system, which leads to a triple plasmon-induced transparency (PIT). The formation mechanisms of the three transparent peaks have their own unique characteristics. First, PIT-I can be switched into the BIC (Friedrich-Wintge bound state in continuum), and the quality factors (Q-factors) of the transparency window of PIT-I are increased during the process. Second, PIT-II comes from near-field coupling between two bright modes. Third, PIT-III is generated by the near-field coupling between a low-Q broadband bright mode and a high-Q narrowband guide mode, which also has a high-Q transparent window due to the guide mode. The triple-PIT described above can be dynamically tuned by the gate voltage of the graphene, particularly for the dynamic tuning of the Q values of PIT-I and PIT-III. Based on the high Q value of the transparent window, our proposed structure can be used for highly sensitive refractive index sensors or devices with prominent slow light effects.

15.
Nanomaterials (Basel) ; 12(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234565

RESUMO

Analog optical computing (AOC) has attracted great attention over the past few years, because of its ultra-high speed (potential for real-time processing), ultra-low power consumption, and parallel processing capabilities. In this article, we design an adder and an ordinary differential equation solver (ODE) on chip by Fourier optics and metasurface techniques. The device uses the 4f system consisting of two metalenses on both sides and one middle metasurface (MMS) as the basic structure. The MMS that performs the computing is the core of the device and can be designed for different applications, i.e., the adder and ODE solver in this article. For the adder, through the comparison of the two input and output signals, the effect of the addition can be clearly displayed. For the ODE solver, as a proof-of-concept demonstration, a representative optical signal is well integrated into the desired output distribution. The simulation result fits well with the theoretical expectation, and the similarity coefficient is 98.28%. This solution has the potential to realize more complex and high-speed artificial intelligence computing. Meanwhile, based on the direct-binary-search (DBS) algorithm, we design a signal generator that can achieve power splitting with the phase difference of π between the two output waveguides. The signal generator with the insertion loss of -1.43 dB has an ultra-compact footprint of 3.6 µm× 3.6 µm. It can generate a kind of input signal for experimental verification to replace the hundreds of micrometers of signal generator composed of a multi-mode interference (MMI) combination used in the verification of this type of device in the past.

16.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808095

RESUMO

The nanostructure composed of nanomaterials and subwavelength units offers flexible design freedom and outstanding advantages over conventional devices. In this paper, a multifunctional nanostructure with phase-change material (PCM) is proposed to achieve tunable infrared detection, radiation cooling and infrared (IR)-laser compatible camouflage. The structure is very simple and is modified from the classic metal-dielectric-metal (MIM) multilayer film structure. We innovatively composed the top layer of metals with slits, and introduced a non-volatile PCM Ge2Sb2Te5 (GST) for selective absorption/radiation regulation. According to the simulation results, wide-angle and polarization-insensitive dual-band infrared detection is realized in the four-layer structure. The transformation from infrared detection to infrared stealth is realized in the five-layer structure, and laser stealth is realized in the atmospheric window by electromagnetic absorption. Moreover, better radiation cooling is realized in the non-atmospheric window. The proposed device can achieve more than a 50% laser absorption rate at 10.6 µm while ensuring an average infrared emissivity below 20%. Compared with previous works, our proposed multifunctional nanostructures can realize multiple applications with a compact structure only by changing the temperature. Such ultra-thin, integratable and multifunctional nanostructures have great application prospects extending to various fields such as electromagnetic shielding, optical communication and sensing.

17.
Opt Lett ; 47(7): 1642-1645, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363698

RESUMO

In this Letter, we propose collective topological corner modes in all-dielectric photonic crystal (PhC) supercell arrays, where each supercell is a second-order topological insulator. We show that coupled multipole corner modes are embedded in surrounding bulk modes at the Γ point even without the band gap, and individual or superposed dipole corner modes are selectively excited with collective behaviors by incident plane waves. These collective modes possess high-quality factors with an optimized thickness of the slab, and multipole decomposition reveals they are dominated by toroidal dipole and magnetic quadrupoles. Finally, we shrink the nontrivial region in each supercell to one unit-cell limit, where we show that collective corner modes still exist. Potential large-area topological applications are also discussed.

18.
Opt Express ; 30(5): 8049-8062, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299554

RESUMO

In this work, we investigate polarization-insensitive dual bound states in the continuum (BICs) at Γ point in symmetric photonic crystal (PhC) slabs. Especially, BICs are tailored by tuning intra- and intercellular optical coupling strengths of PhC slabs. Based on four different approaches, we realize the transition from BIC to quasi-BIC resonances with various dispersion behaviors while maintaining the symmetry of slabs. Also, we show the two resonances are lowest-order even and odd eigenmodes that can match the symmetry of the incident plane wave, and their quality (Q) factors follow the inverse quadratic law except for cases with larger perturbations. Furthermore, multipolar decomposition reveals that even quasi-BICs are dominated by the toroidal dipole and magnetic quadrupole, while odd quasi-BICs are governed by the magnetic dipole and electric quadrupole. Interestingly, an anomalous increase of the Q factor is observed in one case, which is attributed to the mode transformation. Finally, anisotropic coupling adjustment is discussed, which enriches the degrees of freedom to manipulate BICs. This work introduces a novel perspective to tailor BICs at Γ point in PhC slabs and has potential planar photonic applications for nonlinear enhancement and sensing.

19.
Opt Express ; 30(1): 538-549, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35201229

RESUMO

Anisotropic metameterials (AM) provide a new avenue for a next-generation silicon platform to design ultra-compact, densely integrated optical components, thus functional devices based on AM are drawing increasing attention recently. Here, we propose a novel efficient polarization beam splitter (PBS) with high polarization extinction ratio based on AM. An ultra-compact coupling region of 2.5 × 14 µm2 is achieved by tailoring the AM structures, which can efficiently suppress the TE mode coupling, and enhance the TM mode coupling in the directional couplers simultaneously. The insertion loss is simulated to be as low as <0.2 dB within a bandwidth of 70 nm for both modes, and the polarization extinction ratio is as high as 46 dB and 33 dB for TE and TM modes, respectively. We also experimentally demonstrate the proposed PBS, with low insertion loss of 1 dB , high extinction ratio of >20 dB and wide operational bandwidth of >80 nm.

20.
Nanomaterials (Basel) ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947726

RESUMO

Optical pulling forces, which can pull objects in the source direction, have emerged as an intensively explored field in recent years. Conventionally, optical pulling forces exerted on objects can be achieved by tailoring the properties of an electromagnetic field, the surrounding environment, or the particles themselves. Recently, the idea of applying conventional lenses or prisms as photonic probes has been proposed to realize an optical pulling force. However, their sizes are far beyond the scope of optical manipulation. Here, we design a chiral metalens as the photonic probe to generate a robust optical pulling force. The induced pulling force exerted on the metalens, characterized by a broadband spectrum over 0.6 µm (from 1.517 to 2.117 µm) bandwidth, reached a maximum value of -83.76 pN/W. Moreover, under the illumination of incident light with different circular polarization states, the longitudinal optical force acting on the metalens showed a circular dichroism response. This means that the longitudinal optical force can be flexibly tuned from a pulling force to a pushing force by controlling the polarization of the incident light. This work could pave the way for a new advanced optical manipulation technique, with potential applications ranging from contactless wafer-scale fabrication to cell assembly and even course control for spacecraft.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...