Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38507386

RESUMO

In this paper, we consider two challenging issues in reference-based super-resolution (RefSR) for smartphone, (i) how to choose a proper reference image, and (ii) how to learn RefSR in a self-supervised manner. Particularly, we propose a novel self-supervised learning approach for real-world RefSR from observations at dual and multiple camera zooms. Firstly, considering the popularity of multiple cameras in modern smartphones, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the super-resolution (SR) of the lesser zoomed (ultra-wide) image, which gives us a chance to learn a deep network that performs SR from the dual zoomed observations (DZSR). Secondly, for self-supervised learning of DZSR, we take the telephoto image instead of an additional high-resolution image as the supervision information, and select a center patch from it as the reference to super-resolve the corresponding ultra-wide image patch. To mitigate the effect of the misalignment between ultra-wide low-resolution (LR) patch and telephoto ground-truth (GT) image during training, we first adopt patch-based optical flow alignment to obtain the warped LR, then further design an auxiliary-LR to guide the deforming of the warped LR features. To generate visually pleasing results, we present local overlapped sliced Wasserstein loss to better represent the perceptual difference between GT and output in the feature space. During testing, DZSR can be directly deployed to super-solve the whole ultra-wide image with the reference of the telephoto image. In addition, we further take multiple zoomed observations to explore self-supervised RefSR, and present a progressive fusion scheme for the effective utilization of reference images. Experiments show that our methods achieve better quantitative and qualitative performance against state-of-the-arts. The code and pre-trained models will be publicly available.

2.
J Craniofac Surg ; 34(8): 2492-2496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602459

RESUMO

People with an obvious palpebral fold on 1 eye and a narrow or no palpebral fold on the other eye are usually more satisfied with the shape of the obvious palpebral fold and want to acquire symmetry by minimally invasive surgical methods that preserve the shape of the original folds they are more satisfied with. This study introduced a minimally invasive approach using 2 different buried suture techniques on different eyelids to acquire symmetry. The continuous suture method aimed to build palpebral folds, whereas the 3-point interrupted suture method aimed to enhance naturally formed palpebral folds. The 3-point interrupted buried suture method was used on the eye with an obvious palpebral fold, and the continuous buried suture method was performed on the eye with a narrow or no palpebral fold. Twenty patients underwent this procedure to correct the asymmetry between June 2010 and July 2022. The mean follow-up period was 18.12 months. The average swelling period was 7 days on the side using the interrupted buried suture technique and 10 days on the side using the continuous suture method. It took ~3 weeks to recover a relatively natural appearance. According to postoperative follow-up data, all patients were satisfied with the results. Our surgical approach of adopting 2 different buried suture techniques on different eyelids allowed the building of the palpebral fold on one eyelid while enhancing the original fold on the other eyelid, leading to satisfactory results of palpebral fold symmetry.

3.
Front Plant Sci ; 14: 1218229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546254

RESUMO

Abiotic stresses pose significant threat to horticultural crop production worldwide. These stresses adversely affect plant growth, development, and ultimately declined crop growth, yield and quality. In recent years, plant scientists have been actively investigating innovative strategies to enhance abiotic stress resilience in crops, and one promising avenue of research focuses on the use of brassinosteroids (BRs). BRs are a class of plant hormones that play crucial roles in various physiological processes, including cell elongation, differentiation, and stress responses. They have emerged as potent regulators of plant growth and development, and their role in improving abiotic stress tolerance is gaining considerable attention. BRs have been shown to mitigate the negative effects of abiotic stresses by modulating key physiological and biochemical processes, including stomatal regulation, antioxidant defense, osmotic adjustment, and nutrient uptake. Abiotic stresses disrupt numerous physiological functions and lead to undesirable phenotypic traits in plants. The use of BRs as a tool to improve crop resilience offers significant promise for sustainable agriculture in the face of increasing abiotic stresses caused by climate change. By unraveling the phenomenon of BRs, this review emphasizes the potential of BRs as an innovative approach for boosting abiotic stress tolerance and improving the overall productivity and quality of horticultural crops. Further research and field trials are necessary to fully harness the benefits of BRs and translate these findings into practical applications for crop production systems.

4.
Sci Rep ; 12(1): 22623, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587030

RESUMO

While Machine Learning (ML) models have been increasingly applied to a range of histopathology tasks, there has been little emphasis on characterizing these models and contrasting them with human experts. We present a detailed empirical analysis comparing expert neuropathologists and ML models at predicting IDH mutation status in H&E-stained histology slides of infiltrating gliomas, both independently and synergistically. We find that errors made by neuropathologists and ML models trained using the TCGA dataset are distinct, representing modest agreement between predictions (human-vs.-human κ = 0.656; human-vs.-ML model κ = 0.598). While no ML model surpassed human performance on an independent institutional test dataset (human AUC = 0.901, max ML AUC = 0.881), a hybrid model aggregating human and ML predictions demonstrates predictive performance comparable to the consensus of two expert neuropathologists (hybrid classifier AUC = 0.921 vs. two-neuropathologist consensus AUC = 0.920). We also show that models trained at different levels of magnification exhibit different types of errors, supporting the value of aggregation across spatial scales in the ML approach. Finally, we present a detailed interpretation of our multi-scale ML ensemble model which reveals that predictions are driven by human-identifiable features at the patch-level.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética , Mutação , Isocitrato Desidrogenase/genética , Glioma/genética , Glioma/patologia , Aprendizado de Máquina
5.
J Phys Chem A ; 126(20): 3174-3184, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35561251

RESUMO

The electronic properties and their modulations for the nitrogen-vacancy (NV) centers in various nanoscale diamonds are of profound current interest because of their potential applications. However, although the NV centers as chromophores in diamond are the most widely studied, surprisingly, little is known about their magnetic spin coupling properties up to now. Here, we for the first time show, using the spin-polarized DFT calculations, that the NV centers can act as unique endohedral σ-diradical magnets in diamond nanoclusters and exhibit quite strong ferromagnetic (FM) or antiferromagnetic (AFM) spin coupling characteristics due to their unique endotetrahedral structures with favorable radical-radical contacts. Although the neutral NV center (NV0) in its doublet ground state exhibits quite strong AFM spin coupling among three radical C-sites (i.e., an AFM triradical center), interestingly, excess electron injection can convert it to a FM diradical magnet (i.e., the triplet ground state NV-) with almost unchanged J-coupling magnitude, and the J-coupling of the nanocluster can be noticeably enhanced by F-termination of the surface due to triradical spin delocalization mediated by excess electron. However, interior modification (one C in the endotetrahedron core is substituted by N or B or is hydrogenated) can assign the nanocluster perfect AFM diradical character. The spin coupling strength presents a quasilinear correlation with the distance between the two C radicals in the NV core for the same size of the clusters and a high linear correlation with the energy difference between two singly occupied molecular orbitals. Clearly, the FM and AFM couplings as well as their switching behavior in such NV defect diamond nanoclusters featuring the endohedral σ-diradicals are a novel type of promising magnetic material motifs. These findings open up promising spintronic application prospects of the NV diamonds and provide helpful information for the design of inorganic magnetic materials and logic devices.

6.
Phys Chem Chem Phys ; 24(6): 3834-3843, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084417

RESUMO

The strain effect on the magnetic response of 2D materials as spintronic devices is always important in actual applications. Due to the intriguing electronic and magnetic properties of two-dimensional (2D) vanadium porphyrin (V-PP) sheets, we studied the strain-induced magnetic coupling changes in 2D V-PP sheets by using the density functional theory method and found intriguing magnetic variation characters. The calculated results indicate that biaxial strain can modulate the magnetic moments of the central transition metal vanadium atoms and more importantly can induce phase transitions among three magnetic modes with four magnetic states (ferromagnetic (FM), ferrimagnetic (FIM), and two antiferromagnetic (AFM: AFM1 featuring a parallel spin lattice versus AFM2 featuring a crossing spin lattice)) with unique conversion pathways due to their different responses to the strain. As the compressive strain increases, the magnetic characteristics of 2D-VPP transitions as FM → FIM → AFM1 with two critical points (-4.7% and -6%), while the tensile strain can induce the original FM coupling to transition to another AFM state (FM → AFM2) at 5.3%. Analyses of the density of states, spin densities, and Bader charges reveal that the rich magnetic response properties of the system originate from the electron transfer between the central V and the porphyrin ligand induced by strain. This work provides intriguing information regarding the strain-induced magnetic phase transition mechanism and also presents a viable development direction to design 2D porphyrin magnetic semiconductors and spintronic devices.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34958964

RESUMO

Temperature is an important factor affecting the early development, growth and physiology of fish, as well as on aspects of feeding and metabolism. Here, we investigated the impact of low temperature on the growth, glycolipid metabolism and growth hormone (gh) gene methylation in the late stage of Chinese perch (Siniperca chuatsi). Chinese perch larvae were exposed to temperatures with 21 °C (low temperature group (LT)) and 25 °C (control group) for 7 days, and then the LT group was slowly heated to 25 °C and raised at this temperature for two months. Results indicated that the LT group exhibited significantly lower growth rate and weight gain rate than the control group (p < 0.05), but no obvious food intake (FI) were detected yet between LT group and control group. The larvae exposed at 21 °C relative to the 25 °C group had significant decreased transcript levels of GH-IGF axis genes (gh, igf1 and igf2) in Chinese perch juvenile (p < 0.05). Further analysis of the DNA methylation levels of gh showed that the LT group had higher at the CpG sites of -3029 and - 3032 than the control group in larvae (p < 0.05), whereas the DNA methylation levels at CpG sites of -2982 and - 3039 of gh were significantly lower compared with the control group in juveniles (p < 0.05). In addition, the plasma glucose was significantly increased in the LT group (p < 0.05), suggesting the metabolism of blood glucose slowed at low temperature. In larvae, the expressions of glycolipid metabolism genes (ins-ra and ins-rb) in LT group were significantly up-regulated compared to control group in larvae (p < 0.05), while down-regulated in juveniles (p < 0.05). The expression level of ucp2 mRNA was continuously up-regulated under low temperature stress. All these data demonstrate that early exposure to low temperature affected the growth and glycolipid metabolism of Chinese perch.


Assuntos
Percas , Animais , China , Metilação de DNA , Glicolipídeos , Hormônio do Crescimento/genética , Percas/genética , Temperatura
8.
J Comp Physiol B ; 191(5): 881-894, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373935

RESUMO

It is well known that carnivorous fish cannot use plant-proteins efficiently. They affect lipid metabolism of fish and cause serious problems to fish health. The reasons for this deficiency of fish metabolism are not known well. Chinese perch, a carnivorous fish, can accept artificial diet after domestication and is also considered as a novel model of fish for nutrition studies. Therefore, the aim of this study was to explore the effect of fish meal replacement by low- or high-rapeseed meal on lipid and glucose metabolism of Chinese perch. Three experimental diets were formulated with 0, 10%, and 30% rapeseed meal, named as Control, RSL, and RSH groups, respectively. After 8-weeks of the feeding trial, the inhibition of growth and fat deposition were observed in Chinese perch fed with rapeseed meal diets compared to the control group. Fish fed with RSL diets showed decreased food intake, serum low density lipoprotein (LDL), phosphorylated Grb10 (P < 0.05), inhibited fatty acid (FA) transport (lipoprotein lipase (LPL)), and glycerol synthesis (phosphoenol pyruvate carboxykinase (PEPCK)) in the liver. In addition, fish fed with RSL diets were also inhibited FA synthesis (fatty acid synthase (FAS), sterol regulatory element binding protein 1 (SREBP1), and Acetyl-CoA carboxylase (ACC1)), lipid uptake (hepatic lipase (HL)), ß-oxidation (carnitine palmitoyltransferase I (CPT1)), and glycerol synthesis (PEPCK) in the visceral adipose tissue. Fish fed with RSH diets showed phosphorylated AMPK, inhibited FA synthesis (SREBP1, ACC1, and FAS), while enhanced lipolysis (hormone-sensitive lipase (HSL)), and then reduced Acetyl-CoA pool. In turn, ß-oxidation (peroxisome proliferator-activated receptor-a (PPARα) and CPT1) was inhibited, while glycolysis (glucose-6-phosphatase (G6PD) and pyruvate carboxylase (PC)) were enhanced, consequently the lipid accumulation was decreased in the liver. Fish were also inhibited lipid uptake (LPL), that caused inhibiting of FA synthesis (SREBP1), ß-oxidation (CPT1), glycerol synthesis (PEPCK), and in turn improved lipolysis (HSL) in the visceral adipose tissue. Our study suggested that both RSL and RSH diets decreased lipid accumulation in Chinese perch; however, the mechanism of lipid metabolism was different. Fish accepted less diet in RSL group, which inhibited lipid metabolism in the liver and in the visceral adipose tissues, while fish in RSH group activated AMPK pathway, inhibited FA synthesis, and enhanced lipolysis, which reduced Acetyl-CoA pool in the liver. Subsequently, lipid uptake and metabolism were inhibited in the visceral adipose tissue of RSH fish.


Assuntos
Brassica napus , Percas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Brassica napus/metabolismo , China , Dieta/veterinária , Metabolismo dos Lipídeos , Fígado/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
Am J Transl Res ; 13(4): 3302-3308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017502

RESUMO

OBJECTIVE: This study aimed to explore the correlation between glycemic control, microvascular complications and serum glycogen antigen (CA199) in patients with type 2 diabetes mellitus (T2DM). METHODS: 519 patients with T2DM admitted to our hospital were included. All patients had CA199 levels measured. Patients were divided into low glycation (LH) group (HbA1C <7.5%), Hyperglycemia (HH) group (HbA1C ≥7.5%), fasting glucose compliance (SF) group (FBG <7.0 mmol/L), high fasting glucose (HF) group (FBG ≥7.0 mmol/L), postprandial glucose compliance (SP) group (PBG <10.0 mmol/L) and high postprandial glucose (HP) group (PBG ≥10.0 mmol/L) and with microvascular complications group, and no microvascular complications group. Division was according to levels of glycated hemoglobin (HbA1C), fasting blood glucose (FBG), 2-hour postprandial blood glucose (2hPBG), and diabetic microvascular complications. RESULTS: CA199 levels were significantly higher in the HH and HF groups than in the LH and SF groups (P<0.05); HbA1C and FBG were positively correlated with CA199; CA199 levels were not significantly different between SP and HP groups (P>0.05), and PBG was not significantly correlated with CA199 levels. CA199 levels were significantly higher in the group with microvascular complications than in the group without microvascular complications (P<0.05); HbA1C was an independent risk factor for elevated CA199. CONCLUSION: Patients with T2DM and higher CA199 levels need to be evaluated for glycemic status and the presence of microvascular complications. HbA1C is a major risk factor for elevated CA199 levels.

10.
J Mater Chem B ; 9(16): 3533-3543, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909751

RESUMO

Due to the unique advantages, developing a rapid, simple and economical synthetic strategy for porous nanomaterials is of great interest. In this work, for the first time, using sodium hypochlorite as a green oxidant, urea was oxidized to CO2 as a carbon source to prepare the fine-particle crosslinked Cu-precursors, which could be further reduced by sodium ascorbate into pure Cu2O nanospheres (NPs) with a porous morphology at room temperature. Interestingly, our study reveals that introduction of an appropriate amount of MgCl2 into the raw materials can tune the pore sizes and surface area, but has no influence on the phase purity of the resulting Cu2O NPs. Significantly, all the synthesized Cu2O NPs exhibited intrinsic peroxidase-like activity with higher affinity towards both 3,3,5,5-tetramethylbenzidine (TMB) and H2O2 than horseradish peroxidase (HRP) due to the highly porous morphology and the electrostatic attraction towards TMB. The colorimetric detection of glucose based on the resulting porous Cu2O NPs presented a limit of detection (LOD) of 2.19 µM with a broad linear range from 1-1000 µM, much better than many recently reported composite-based nanozymes. Meanwhile, this nanozyme system was utilized to detect l-cysteine, exhibiting a LOD value as low as 0.81 µM within a linear range from 0 to 10 µM. More interesting, this sensing system shows high sensitivity and excellent selectivity in determining glucose and l-cysteine, which is suitable for detecting serum samples with reliable results. Therefore, the present study not only develops a simple strategy to prepare Cu2O NPs with controllable porous structure, but also indicates its promising applications in bioscience and disease diagnosis.


Assuntos
Técnicas Biossensoriais , Colorimetria , Cobre/química , Glucose/análise , Nanosferas/química , Benzidinas/química , Catálise , Cobre/metabolismo , Peróxido de Hidrogênio/química , Nanosferas/metabolismo , Tamanho da Partícula , Porosidade , Propriedades de Superfície
11.
BMC Genomics ; 22(1): 129, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618656

RESUMO

BACKGROUND: As economical traits, food habits domestication can reduce production cost in aquaculture. However, the molecular mechanism underlying food habits domestication has remained elusive. Mandarin fish (Siniperca chuatsi) only feed on live prey fish and refuse artificial diets. In the present study, we domesticated mandarin fish to feed on artificial diets. The two groups were obtained, the fish did not eat artificial diets or ate artificial diets during all of the three domestication processes, named Group W or X, respectively. RESULTS: Using transcriptome and metabolome analysis, we investigated the differentially expressed genes and metabolites between the two groups, and found three common pathways related to food habit domestication, including retinol metabolism, glycerolipid metabolism, and biosynthesis of unsaturated fatty acids pathways. Furthermore, the western blotting and bisulfite sequencing PCR analysis were performed. The gene expression of TFIIF and histone methyltransferase ezh1 were significantly increased and decreased in the fish of Group X, respectively. The total DNA methylation levels of TFIIF gene and tri-methylation of histone H3 at lysine 27 (H3K27me3) were significantly higher and lower in the fish of Group X, respectively. CONCLUSION: It was speculated that mandarin fish which could feed on artificial diets, might be attributed to the lower expression of ezh1, resulting in the decreased level of H3K27me3 and increased level of DNA methylation of TFIIF gene. The high expression of TFIIF gene might up-regulate the expression of genes in retinol metabolism, glycerolipid metabolism and glycerophosphoric metabolism pathways. Our study indicated the relationship between the methylation of DNA and histone and food habits domestication, which might be a novel molecular mechanism of food habits domestication in animals.


Assuntos
Perciformes , Transcriptoma , Animais , Dieta , Domesticação , Comportamento Alimentar , Metaboloma , Perciformes/genética
12.
Materials (Basel) ; 13(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317177

RESUMO

The increasing annual emissions of iron ore tailings have proved a great threat to the natural environment, and the shortage of natural river sand, as well as the pursuit of sustainable development materials, provides motivation to reuse iron ore tailings as a fine aggregate in concrete. Due to the significantly different properties of iron tailings sand compared with natural river sand-such as the higher density, higher content of limestone particles smaller than 75 µm and its rough and angular shape-concretes prepared with iron tailings sand show remarkably higher shrinkage. This study presents the shrinkage characterization and shrinkage-reducing efficiency of three different methods on iron tailings, sand concrete and river sand concrete. The internal humidity was also monitored to reveal the shrinkage-reducing mechanism. The obtained results indicated that the autogenous and total shrinkage of iron tailings sand concrete were 9.8% and 13.3% higher than the river sand concrete at the age of 90 d, respectively. The shrinkage reducing agent (SRA) was the most effective shrinkage reducing method for river sand concrete, while for iron tailings sand concrete, super absorbent polymer (SAP) and controlled permeable formwork liner (CPFL) it worked best on autogenous shrinkage and drying shrinkage, respectively. Furthermore, the shrinkage mitigation strategies worked earlier for the drying shrinkage behavior of iron tailings sand concrete, while no such condition could be found for autogenous shrinkage.

13.
Sci Prog ; 103(3): 36850420927836, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32744180

RESUMO

INTRODUCTION: As an important transportation, the research on the control strategy of forklift has not been widely carried out. OBJECTIVES: This article proposes a turning slip regulation control strategy, which includes the improved electronic differential velocity control and turning slip regulation control, to track the optimal slip ratio. METHODS: First, combined with the basic structure and characteristics of dual-wheel-independent-drive electric forklift, the vehicle model, Ackermann-Jeantand steering model, tire-ground model, and tire model of the driving wheel are established respectively. Second, according to these models, an improved electronic differential control strategy considering the influence of vertical load on tire force is proposed and it can reasonably allocate the driving torque of the two driving wheels of electric forklift. Moreover, the optimal slip ratio is given out and the turning slip regulation control strategy, which can track the optimal slip ratio of electric forklift under the conditions of different road surfaces is designed. RESULTS: The simulation result and vehicle test show that the control strategy can optimize the slip ratio of electric forklift and greatly improve the stability of electric forklift. CONCLUSION: The turning slip regulation control strategy can be implemented on the TFC35 forklift to improve the safety and stability.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31887407

RESUMO

In order to evaluate fatty acid (FA) sensing systems based on binding to FAT/CD36 in hypothalamus of Chinese perch (Siniperca chuatsi) and its sensitivity to FAs with the same chain length and different unsaturation levels. The effects of Stearate (SA; C18:0), oleate (OA; C18:1 n-9), linoleic acid (LA; C18:2 n-6), and α-linolenic acid (ALA; C18:3 n-3) on hypothalamic FA sensing were evaluated by intracerebroventricular (ICV) administration. Food intake was assessed after 2, 4, 6, 8 and 12 h. Gene expression associated with FA sensing mechanism such as cd36, pparα and srebp1c, and neuropeptides controlling appetite such as pomca, cart, agrp2 and npy were assessed after 6 h. The ICV treatment of OA, LA and ALA activated FAT/CD36 and PPARα, rather than SA, and modulated gene expression levels of hypothalamic neuropeptides associated with appetite. And then, OA, LA and ALA inhibited food intake, which was consistent with the activation of hypothalamus FA sensing. Our data indicated some mechanisms of the hypothalamic FA sensing systems also existed in Chinese perch. It's worth noting that polyunsaturated fatty acids (PUFA) could also activate hypothalamic FA sensing mechanisms in Chinese perch. The unsaturation of FA appears to be extremely important for FA sensing mechanisms, since no major influences in Chinese perch after SA treatment. Our findings will contribute to the study of long-chain FAs sensing mechanisms in fish hypothalamus and highlight the importance of PUFAs in fish species.


Assuntos
Antígenos CD36/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos/administração & dosagem , Hipotálamo/efeitos dos fármacos , Neuropeptídeos/metabolismo , Percas/fisiologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hipotálamo/metabolismo , Infusões Intraventriculares , PPAR alfa/metabolismo
15.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574927

RESUMO

Leaf variegation has been demonstrated to have adaptive functions such as cold tolerance. Pittosporum tobira is an ornamental plant with natural leaf variegated cultivars grown in temperate regions. Herein, we investigated the role of leaf variegation in low temperature responses by comparing variegated "Variegatum" and non-variegated "Green Pittosporum" cultivars. We found that leaf variegation is associated with impaired chloroplast development in the yellow sector, reduced chlorophyll content, strong accumulation of carotenoids and high levels of ROS. However, the photosynthetic efficiency was not obviously impaired in the variegated leaves. Also, leaf variegation plays low temperature protective function since "Variegatum" displayed strong and efficient ROS-scavenging enzymatic systems to buffer cold (10 °C)-induced damages. Transcriptome analysis under cold conditions revealed 309 differentially expressed genes between both cultivars. Distinctly, the strong cold response observed in "Variegatum" was essentially attributed to the up-regulation of HSP70/90 genes involved in cellular homeostasis; up-regulation of POD genes responsible for cell detoxification and up-regulation of FAD2 genes and subsequent down-regulation of GDSL genes leading to high accumulation of polyunsaturated fatty acids for cell membrane fluidity. Overall, our results indicated that leaf variegation is associated with changes in physiological, biochemical and molecular components playing low temperature protective function in P. tobira.


Assuntos
Adaptação Biológica , Temperatura Baixa , Folhas de Planta/fisiologia , Rosales/fisiologia , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fenótipo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo
16.
Lipids Health Dis ; 18(1): 70, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30902099

RESUMO

BACKGROUND: This study aims to investigate the molecular mechanism of Adenovirus type 36 (Ad36) in adipocyte differentiation and glucolipid metabolism. METHODS: Rat obesity model was established by Ad36 infection and high-fat diet, respectively. Comparison of the body weight, clinical biochemical indicators, insulin sensitivity and lipid heterotopic deposition between these two models was performed. Ad36-induced adipocyte in vitro model was also established. The binding rate of FoxO1, PPARγ and its target gene promoter was detected using ChIP. The mRNA and protein expression levels of PPARγ and downstream target genes were detected by RT-PCR and Western blot, respectively. Oil red O staining was used to measure differentiation into adipocyte. Wortmannin (WM), inhibitor of PI3K, was used to act on Ad36-induced hADSCs. RESULTS: Ad36-induced obese rats did not exhibit disorders in blood glucose and blood TG, insulin resistance and lipid ectopic deposition. The expression of Adipoq, Lpin1 and Glut4 in the adipose tissue increased. Oil red O staining showed that Ad36 induced the differentiation of hAMSCs into human adipocytes in vitro. During this process, the binding rate of FoxO1 and PPARγ promoter regions was weakened. However, the binding rate of the transcription factor PPARγ to its target genes Acc, Adipoq, Lpin1 and Glut4 was enhanced, and thus increased the protein expression of P-FoxO1, PPARγ2, ACC, LPIN1, GLUT4 and ADIPOQ. The PI3K inhibitor Wortmannin reduced the expression of P-Akt, P-FoxO1 and PPARγ2, thereby inhibiting adipogenesis of hADSC. CONCLUSION: Ad36 may promote fatty acid and triglyceride synthesis, and improve insulin sensitivity by affecting the PI3K/Akt/FoxO1/PPARγ signaling pathway.


Assuntos
Tecido Adiposo/metabolismo , Obesidade/genética , PPAR gama/genética , Células-Tronco/citologia , Adipócitos/metabolismo , Adipócitos/virologia , Adiponectina/genética , Tecido Adiposo/citologia , Tecido Adiposo/virologia , Animais , Diferenciação Celular/genética , Dieta Hiperlipídica/efeitos adversos , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Humanos , Metabolismo dos Lipídeos/genética , Obesidade/metabolismo , Obesidade/patologia , Obesidade/virologia , Fosfatidato Fosfatase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/virologia , Wortmanina/administração & dosagem
17.
Int J Clin Exp Med ; 8(8): 13171-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26550240

RESUMO

This study aims to explore the potential pathways and molecular characteristics of fluorine-induced osteoblast apoptosis. In vitro fluorine-induced model was established with an osteogenesis sarcoma cell line Saos-2. Then flow cytometry was used to determine the mitochondrial membrane potential at 24 h after the intervention. 84 apoptosis-related genes in the cells were determined using the functional polymerase chain reaction (PCR) chip and part of the differentially expressed genes was verified with immune blotting. When the stimulated concentration of sodium fluoride were 20 mg/L, 40 mg/L and 80 mg/L, the mitochondrial membrane potential of the osteoblast cells were 27.0%, 28.8% and 38.6%, respectively, significantly higher than that in the blank control group (P<0.05). The PCR chip detection found 13 up-regulating genes and 15 down-regulating genes, among which the expression of Bim, Caspase 9, Caspase 14, B-cell lymphoma-2 (BCL2) and BAX increased with the doses of sodium fluoride, while the expression of Caspase 3 down-regulated in 5 mg/L sodium fluoride but up-regulated at the concentration of sodium fluoride more than 10 mg/L. Caspase 7 expression showed no obvious difference between the different concentration groups. However, Caspase 10 decreased with the increasing doses of sodium fluoride. Fluoride-induced osteoblast apoptosis may be through the mitochondrial pathway (including endoplasmic reticulum stress pathway) and death receptor pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...