Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Plant Biotechnol J ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803114

RESUMO

Although thousands of genes have been identified or cloned in rice (Oryza sativa) in the last two decades, the majority of them have only been separately characterized in specific varieties or single-gene modified backgrounds, thus limiting their practical application. We developed an optimized multiplex genome editing (MGE) toolbox that can efficiently assemble and stably express up to twelve sgRNA targets in a single plant expression vector. In this study, we established the MGE-based Rapid Directional Improvement (MRDI) strategy for directional improvement of complex agronomic traits in one small-scale rice transformation. This approach provides a rapid and practical procedure, encompassing sgRNA assembly, transgene-free screening and the creation of promising germplasm, by combining the precision of gene editing with phenotype-based field breeding. The MRDI strategy was used to generate the full diversity of twelve main agronomic genes in rice cultivar FXZ for the directional improvement of its growth duration and plant architecture. After applying the MRDI to FXZ, ideal plants with the desired traits of early heading date reduced plant height, and more effective panicles were generated without compromising yield, blast resistance and grain quality. Furthermore, the results of whole-genome sequencing (WGS), including the analysis of structural variations (SVs) and single nucleotide variations (SNVs) in the MGE plants, confirmed the high specificity and low frequency of unwanted mutations associated with this strategy. The MRDI breeding strategy would be a robust approach for exploring and applying crucial agronomic genes, as well as for generating novel elite germplasm in the future.

2.
Cell Prolif ; : e13654, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736291

RESUMO

Osteoblasts and osteoclasts collaborate in bone metabolism, facilitating bone development, maintaining normal bone density and strength, and aiding in the repair of pathological damage. Endoplasmic reticulum stress (ERS) can disrupt the intracellular equilibrium between osteoclast and osteoblast, resulting in dysfunctional bone metabolism. The inositol-requiring enzyme-1α (IRE1α) pathway-the most conservative unfolded protein response pathway activated by ERS-is crucial in regulating cell metabolism. This involvement encompasses functions such as inflammation, autophagy, and apoptosis. Many studies have highlighted the potential roles of the IRE1α pathway in osteoblasts, chondrocytes, and osteoclasts and its implication in certain bone-related diseases. These findings suggest that it may serve as a mediator for bone metabolism. However, relevant reviews on the role of the IRE1α pathway in bone metabolism remain unavailable. Therefore, this review aims to explore recent research that elucidated the intricate roles of the IRE1α pathway in bone metabolism, specifically in osteogenesis, chondrogenesis, osteoclastogenesis, and osteo-immunology. The findings may provide novel insights into regulating bone metabolism and treating bone-related diseases.

3.
BMC Plant Biol ; 24(1): 285, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627617

RESUMO

Crop roots are colonized by large numbers of microorganisms, collectively known as the root-microbiome, which modulate plant growth, development and contribute to elemental nutrient uptake. In conditions of nitrogen limitation, the over-expressed Calcineurin B-like interacting protein kinase 2 (OsCIPK2) gene with root-specific promoter (RC) has been shown to enhance growth and nitrogen uptake in rice. Analysis of root-associated bacteria through high-throughput sequencing revealed that OsCIPK2 has a significant impact on the diversity of the root microbial community under low nitrogen stress. The quantification of nifH gene expression demonstrated a significant enhancement in nitrogen-fixing capabilities in the roots of RC transgenetic rice. Synthetic microbial communities (SynCom) consisting of six nitrogen-fixing bacterial strains were observed to be enriched in the roots of RC, leading to a substantial improvement in rice growth and nitrogen uptake in nitrogen-deficient soils. Forty and twenty-three metabolites exhibiting differential abundance were identified in the roots and rhizosphere soils of RC transgenic rice compared to wild-type (WT) rice. These findings suggest that OSCIPK2 plays a role in restructuring the microbial community in the roots through the regulation of metabolite synthesis and secretion. Further experiments involving the exogenous addition of citric acid revealed that an optimal concentration of this compound facilitated the growth of nitrogen-fixing bacteria and substantially augmented their population in the soil, highlighting the importance of citric acid in promoting nitrogen fixation under conditions of low nitrogen availability. These findings suggest that OsCIPK2 plays a role in enhancing nitrogen uptake by rice plants from the soil by influencing the assembly of root microbial communities, thereby offering valuable insights for enhancing nitrogen utilization in rice cultivation.


Assuntos
Bactérias Fixadoras de Nitrogênio , Oryza , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Solo , Rizosfera , Ácido Cítrico , Microbiologia do Solo
4.
Nano Lett ; 24(15): 4610-4617, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564191

RESUMO

The intricate protonation process in carbon dioxide reduction usually makes the product unpredictable. Thus, it is significant to control the reactive intermediates to manipulate the reaction steps. Here, we propose that the synergistic La-Ti active sites in the N-La2Ti2O7 nanosheets enable the highly selective carbon dioxide photoreduction into methane. In the photoreduction of CO2 over N-La2Ti2O7 nanosheets, in situ Fourier transform infrared spectra are utilized to monitor the *CH3O intermediate, pivotal for methane production, whereas such monitoring is not conducted for La2Ti2O7 nanosheets. Also, theoretical calculations testify to the increased charge densities on the Ti and La atoms and the regulated formation energy barrier of *CO and *CH3O intermediates by the constructed synergistic active sites. Accordingly, the methane formation rate of 7.97 µL h-1 exhibited by the N-La2Ti2O7 nanosheets, along with an electron selectivity of 96.6%, exceeds that of most previously reported catalysts under similar conditions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38662533

RESUMO

Aquatic actuators based on the light-to-work conversion are of paramount significance for the development of cutting-edge fields including robots, micromachines, and intelligent systems. Herein, we report the design and synthesis of near-infrared light-driven hydrogel actuators through loading with lightweight polydopamine-modified hollow glass microspheres (PDA-HGMPs) into responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels. These PDA-HGMPs can not only function as an excellent photothermal agent but also accelerate the swelling/desewlling of hydrogels due to their reconstruction for polymer gel skeleton, which speeds up the response rate of hydrogel actuators. The resulting hydrogel actuator shows controlled movements under light illumination, including complex self-propellant and floating/sinking motions. As the proof-of-concept demonstrations, a self-sensing robot is conceptualized by integrating the PDA-HGMP-containing hydrogel actuator with an ultrathin and miniature pressure sensor. Hopefully, this work can offer some important insights into the research of smart aquatic soft actuators, paving the way to the potential applications in emerging fields including micromachines and intelligent systems.

6.
Comput Biol Med ; 172: 108290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503097

RESUMO

Generative Large Language Models (LLMs) have achieved significant success in various natural language processing tasks, including Question-Answering (QA) and dialogue systems. However, most models are trained on English data and lack strong generalization in providing answers in Chinese. This limitation is especially evident in specialized domains like traditional Chinese medical QA, where performance suffers due to the absence of fine-tuning and high-quality datasets. To address this, we introduce MedChatZH, a dialogue model optimized for Chinese medical QA based on transformer decoder with LLaMA architecture. Continued pre-training on a curated corpus of Chinese medical books is followed by fine-tuning with a carefully selected medical instruction dataset, resulting in MedChatZH outperforming several Chinese dialogue baselines on a real-world medical dialogue dataset. Our model, code, and dataset are publicly available on GitHub (https://github.com/tyang816/MedChatZH) to encourage further research in traditional Chinese medicine and LLMs.


Assuntos
Educação Médica , Medicina Tradicional Chinesa , Humanos , Povo Asiático , Idioma , Encaminhamento e Consulta
7.
RSC Adv ; 14(3): 1527-1537, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179095

RESUMO

Periodontitis can lead to defects in the alveolar bone, thus increasing the demand for dependable biomaterials to repair these defects. This study aims to examine the pro-osteogenic and anti-bacterial properties of UPPE/ß-TCP/TTC composites (composed of unsaturated polyphosphoester [UPPE], ß-tricalcium phosphate [ß-TCP], and tetracycline [TTC]) under an inflammatory condition. The morphology of MC3T3-E1 cells on the composite was examined using scanning electron microscopy. The toxicity of the composite to MC3T3-E1 cells was assessed using the Alamar-blue assay. The pro-osteogenic potential of the composite was assessed through ALP staining, ARS staining, RT-PCR, and WB. The antimicrobial properties of the composite were assessed using the zone inhibition assay. The results suggest that: (1) MC3T3-E1 cells exhibited stable adhesion to the surfaces of all four composite groups; (2) the UPPE/ß-TCP/TTC composite demonstrated significantly lower toxicity to MC3T3-E1 cells; and (3) the UPPE/ß-TCP/TTC composite had the most pronounced pro-osteogenic effect on MC3T3-E1 cells by activating the WNT/ß-catenin pathway and displaying superior antibacterial properties. UPPE/ß-TCP/TTC, as a biocomposite, has been shown to possess antibacterial properties and exhibit excellent potential in facilitating osteogenic differentiation of MC3T3-E1 cells.

8.
9.
Lab Chip ; 24(2): 317-326, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38087953

RESUMO

This work reports the development of a novel microfluidic biosensor using a graphene field-effect transistor (GFET) design for the parallel label-free analysis of multiple biomarkers. Overcoming the persistent challenge of constructing µm2-sized FET sensitive interfaces that incorporate multiple receptors, we implement a split-float-gate structure that enables the manipulation of multiplexed biochemical functionalization using microfluidic channels. Immunoaffinity biosensing experiments are conducted using the mixture samples containing three liver cancer biomarkers, carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and parathyroid hormone (PTH). The results demonstrate the capability of our label-free biochip to quantitatively detect multiple target biomarkers simultaneously by observing the kinetics in 10 minutes, with the detection limit levels in the nanomolar range. This microfluidic biosensor provides a valuable analytical tool for rapid multi-target biosensing, which can be potentially utilized for domiciliary tests of cancer screening and prognosis, obviating the need for sophisticated instruments and professional operations in hospitals.


Assuntos
Técnicas Biossensoriais , Grafite , Neoplasias Hepáticas , Humanos , Biomarcadores Tumorais/análise , Grafite/química , Microfluídica , Antígeno Carcinoembrionário/análise , Biomarcadores
10.
Plants (Basel) ; 12(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836186

RESUMO

In this review, the significance of ratoon rice was introduced, and the research status and development trends of ratoon rice were also summarized. It is pointed out that mechanically harvested ratoon rice is the developing direction of future ratoon rice. On this basis, we analyzed the relationship between the yield of ratoon rice and many factors, such as variety characteristics, sowing date, water control, fertilizer, and many others. It is important to construct a comprehensive and practical evaluation system for rice regeneration that can provide a basis for high-yield cultivation of machine-harvested ratoon rice. At the same time, it is suggested that combining high-yield cultivation with the green ecological efficiency of rice can achieve better production and improve the quality of rice. Finally, some problems with ratoon rice development were put forward. An in-depth study on the rhizosphere biology and regulation techniques of ratoon rice and the effective ecological compensation mechanism increased the capacity and quality of ratoon rice. Further, the functioning of such research can enhance the planting area for ratoon rice and improve food security.

11.
Molecules ; 28(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836625

RESUMO

Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase (mPGES-1) are two key targets in anti-inflammatory therapy. Medicine and food homology (MFH) substances have both edible and medicinal properties, providing a valuable resource for the development of novel, safe, and efficient COX-2 and mPGES-1 inhibitors. In this study, we collected active ingredients from 503 MFH substances and constructed the first comprehensive MFH database containing 27,319 molecules. Subsequently, we performed Murcko scaffold analysis and K-means clustering to deeply analyze the composition of the constructed database and evaluate its structural diversity. Furthermore, we employed four supervised machine learning algorithms, including support vector machine (SVM), random forest (RF), deep neural networks (DNNs), and eXtreme Gradient Boosting (XGBoost), as well as ensemble learning, to establish 640 classification models and 160 regression models for COX-2 and mPGES-1 inhibitors. Among them, ModelA_ensemble_RF_1 emerged as the optimal classification model for COX-2 inhibitors, achieving predicted Matthews correlation coefficient (MCC) values of 0.802 and 0.603 on the test set and external validation set, respectively. ModelC_RDKIT_SVM_2 was identified as the best regression model based on COX-2 inhibitors, with root mean squared error (RMSE) values of 0.419 and 0.513 on the test set and external validation set, respectively. ModelD_ECFP_SVM_4 stood out as the top classification model for mPGES-1 inhibitors, attaining MCC values of 0.832 and 0.584 on the test set and external validation set, respectively. The optimal regression model for mPGES-1 inhibitors, ModelF_3D_SVM_1, exhibited predictive RMSE values of 0.253 and 0.35 on the test set and external validation set, respectively. Finally, we proposed a ligand-based cascade virtual screening strategy, which integrated the well-performing supervised machine learning models with unsupervised learning: the self-organized map (SOM) and molecular scaffold analysis. Using this virtual screening workflow, we discovered 10 potential COX-2 inhibitors and 15 potential mPGES-1 inhibitors from the MFH database. We further verified candidates by molecular docking, investigated the interaction of the candidate molecules upon binding to COX-2 or mPGES-1. The constructed comprehensive MFH database has laid a solid foundation for the further research and utilization of the MFH substances. The series of well-performing machine learning models can be employed to predict the COX-2 and mPGES-1 inhibitory capabilities of unknown compounds, thereby aiding in the discovery of anti-inflammatory medications. The COX-2 and mPGES-1 potential inhibitor molecules identified through the cascade virtual screening approach provide insights and references for the design of highly effective and safe novel anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Inibidores de Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , Algoritmos , Aprendizado de Máquina , Redes e Vias Metabólicas
12.
J Periodontal Res ; 58(6): 1300-1314, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715945

RESUMO

OBJECTIVE: This study aimed to investigate the effect of proanthocyanidin (PA) on osteogenesis mediated by periodontal ligament stem cells (PDLSCs) and endogenous alveolar bone regeneration. BACKGROUND: Leveraging the osteogenic potential of resident stem cells is a promising strategy for alveolar bone regeneration. PA has been reported to be effective in osteogenesis. However, the effect and mechanism of PA on the osteogenic differentiation of PDLSCs remain elusive. METHODS: Human PDLSCs were treated with various doses of PA to assess the cell proliferation using Cell Counting Kit-8. The osteogenic differentiation ability was detected by qRT-PCR analysis, western blot analysis, Alizarin red S staining, and Alkaline Phosphatase staining. The level of autophagy was evaluated by confocal laser scanning microscopy, transmission electron microscopy, and western blot analysis. RNA sequencing was utilized to screen the potential signaling pathway. The alveolar bone defect model of rats was created to observe endogenous bone regeneration. RESULTS: PA activated intracellular autophagy in PDLSCs, resulting in enhanced osteogenic differentiation. Moreover, this effect could be abolished by the autophagy inhibitor 3-Methyladenine. Mechanistically, the PI3K/Akt/mTOR pathway was negatively correlated with PA-mediated autophagy activation. Lastly, PA promoted the alveolar bone regeneration in vivo, and this effect was reversed when the autophagy process was blocked. CONCLUSION: PA may activate autophagy by inhibiting PI3K/Akt/mTOR signaling pathway to promote the osteogenesis of PDLSCs and enhance endogenous alveolar bone regeneration.


Assuntos
Ligamento Periodontal , Proantocianidinas , Humanos , Ratos , Animais , Osteogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proantocianidinas/farmacologia , Células-Tronco , Diferenciação Celular , Regeneração Óssea/genética , Proliferação de Células , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Células Cultivadas
13.
Front Plant Sci ; 14: 1112146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875569

RESUMO

Background: Ratoon rice cropping has been shown to provide new insights into overcoming the current challenges of rice production in southern China. However, the potential mechanisms impacting yield and grain quality under rice ratooning remain unclear. Methods: In this study, changes in yield performance and distinct improvements in grain chalkiness in ratoon rice were thoroughly investigated, using physiological, molecular and transcriptomic analysis. Results: Rice ratooning induced an extensive carbon reserve remobilization in combination with an impact on grain filling, starch biosynthesis, and ultimately, an optimization in starch composition and structure in the endosperm. Furthermore, these variations were shown to be associated with a protein-coding gene: GF14f (encoding GF14f isoform of 14-3-3 proteins) and such gene negatively impacts oxidative and environmental resistance in ratoon rice. Conclusion: Our findings suggested that this genetic regulation by GF14f gene was the main cause leading to changes in rice yield and grain chalkiness improvement of ratoon rice, irrespective of seasonal or environmental effects. A further significance was to see how yield performance and grain quality of ratoon rice were able to be achieved at higher levels via suppression of GF14f.

14.
Talanta ; 258: 124470, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958098

RESUMO

During global outbreaks such as COVID-19, regular nucleic acid amplification tests (NAATs) have posed unprecedented burden on hospital resources. Data of traditional NAATs are manually analyzed post assay. Integration of artificial intelligence (AI) with on-chip assays give rise to novel analytical platforms via data-driven models. Here, we combined paper microfluidics, portable optoelectronic system with deep learning for SARS-CoV-2 detection. The system was quite streamlined with low power dissipation. Pixel by pixel signals reflecting amplification of synthesized SARS-CoV-2 templates (containing ORF1ab, N and E genes) can be real-time processed. Then, the data were synchronously fed to the neural networks for early prediction analysis. Instead of the quantification cycle (Cq) based analytics, reaction dynamics hidden at the early stage of amplification curve were utilized by neural networks for predicting subsequent data. Qualitative and quantitative analysis of the 40-cycle NAATs can be achieved at the end of 22nd cycle, reducing time cost by 45%. In particular, the attention mechanism based deep learning model trained by microfluidics-generated data can be seamlessly adapted to multiple clinical datasets including readouts of SARS-CoV-2 detection. Accuracy, sensitivity and specificity of the prediction can reach up to 98.1%, 97.6% and 98.6%, respectively. The approach can be compatible with the most advanced sensing technologies and AI algorithms to inspire ample innovations in fields of fundamental research and clinical settings.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Inteligência Artificial , Microfluídica , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade
15.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142652

RESUMO

Improving chilling tolerance at the seedling stage in rice is essential for agricultural research. We combined a physiological analysis with transcriptomics in a variety Dular subjected to chilling followed by recovery at normal temperature to better understand the chilling tolerance mechanisms of rice. Chilling inhibited the synthesis of chlorophyll and non-structural carbohydrate (NSC) and disrupted the ion balance of the plant, resulting in the impaired function of rice leaves. The recovery treatment can effectively reverse the chilling-related injury. Transcriptome results displayed that 21,970 genes were identified at three different temperatures, and 11,732 genes were differentially expressed. According to KEGG analysis, functional categories for differentially expressed genes (DEGs) mainly included ribosome (8.72%), photosynthesis-antenna proteins (7.38%), phenylpropanoid biosynthesis (11.41%), and linoleic acid metabolism (10.07%). The subcellular localization demonstrated that most proteins were located in the chloroplasts (29.30%), cytosol (10.19%), and nucleus (10.19%). We proposed that some genes involved in photosynthesis, ribosome, phenylpropanoid biosynthesis, and linoleic acid metabolism may play key roles in enhancing rice adaptation to chilling stress and their recovery capacity. These findings provide a foundation for future research into rice chilling tolerance mechanisms.


Assuntos
Oryza , Carboidratos , Clorofila/metabolismo , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácido Linoleico/metabolismo , Oryza/metabolismo , Transcriptoma
16.
Front Plant Sci ; 13: 949752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991455

RESUMO

Although there is an increasing debate about ecological consequences of environmental predictability for plant phenotype and fitness, the effect of predictability of parental environments on the offspring is still indefinite. To clarify the role of environmental predictability in maternal effects and the growth strategy of clonal offspring, a greenhouse experiment was conducted with Glechoma longituba. The parental ramets were arranged in three ultraviolet-B (UV-B) conditions, representing two predictable environments (regular and enhanced UV-B) and an unpredictable environment (random UV-B), respectively. The offspring environments were the same as their parent or not (without UV-B). At the end of experiment, the growth parameters of offspring were analyzed. The results showed that maternal effects and offspring growth were regulated by environmental predictability. Offspring of unpredictable environmental parents invested more resources in improving defense components rather than in rapid growth. Although offspring of predictable parents combined two processes of defense and growth, there were still some differences in the strategies between the two offspring, and the offspring of regular parent increased the biomass allocation to roots (0.069 g of control vs. 0.092 g of regular), but that of enhanced parent changed the resource allocation of nitrogen in roots and phosphorus in blade. Moreover, when UV-B environments of parent and offspring were matched, it seemed that maternal effects were not adaptive, while the growth inhibition in the predictable environment was weaker than that in unpredictable environment. In the predictable environment, the recovered R/S and the increased defense substances (flavonoid and anthocyanin) contributed to improving offspring fitness. In addition, when UV-B environments of parent and offspring were mismatched, offspring growth was restored or improved to some extent. The offspring performance in mismatched environments was controlled by both transgenerational effect and within-generational plasticity. In summary, the maternal effects affected growth strategies of offspring, and the differences of strategies depended on the predictability of parental UV-B environments, the clone improved chemical defense to cope with unpredictable environments, while the growth and defense could be balanced in predictable environments. The anticipatory maternal effects were likely to improve the UV-B resistance.

17.
Int J Gen Med ; 15: 8755-8766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601649

RESUMO

Objective: Microsurgery of andrology always brings unexpected findings. Scrotal calculi are rare and unique, which are easily confused with tumor. To understand its etiology and harm, our study retrospectively analyzed the clinical characteristics of men with scrotal calculi to provide a reference for clinical practice. Methods: The clinical data of patients who underwent microscopic testicular sperm extraction (MTESE) and microscopic epididymal sperm aspiration (MESA) from January 1, 2018 to December 31, 2021 were retrospectively analyzed. Data screening was performed on cases in which calculi were found or not, and the relationship between calculi and spermatogenesis was analyzed. Results: A total of 405 patients were recruited. After screening, 218 nonobstructive azoospermia (NOA), 83 obstructive azoospermia (OA), and 13 cryptozoospermia (CZ) patients were included in the study. Calculi were found in 3 patients [incidence was 0.74% (3/405)], in which 2 patients had obstructive azoospermia (1 was epididymal calculi, 1 was intrascrotal calculi) and 1 patient had cryptozoospermia (intrascrotal calculi). Pathological results showed that chronic granuloma with abscess infiltration appeared in epididymal tissue, basement membrane thickening and fibrosis appeared in seminiferous tubules, and fibrous hyperplasia with calcium deposition was found in scrotal calculus. White blood cells, lymphocytes, red blood cells, abstinence time and urethritis were closely related to the occurrence of calculi. While abstinence time might be a potential predictor, which increased the risk by approximately 1.2 times. Conclusion: Disturbance of the testicular microenvironment caused by lymphocyte infiltration may be the main reason for scrotal calculi and ultimately cause spermatogenesis disorders. Prolonged sexual abstinence was a potential risk.

18.
Plants (Basel) ; 10(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34686019

RESUMO

Arsenic is one of the most hazardous metalloids in nature, and due to its high water solubility, it is one of the most important causes of pollution. However, silicon reduces the uptake and transport of arsenic in rice. This study investigates the interaction of different arsenic and silicon levels on dry weight, protein content, and concentrations of arsenic and silicon in two different rice shoots and roots of Dular wild-type (DU-WT) and Dular Lsi1-overexpressed (DU-OE) rice. It should be noted that all seedlings were subjected to four different treatments. For RNA-seq and qPCR, the DU-WT genotype was selected as the control and DU-OE as the treatment. With the addition of silicone treatment, dry weight and protein content in the shoots and roots of both rice lines were increased, while the concentration of arsenic in these two organs was decreased. When seedlings were exposed to arsenic treatments, protein content, silicon concentration, and dry weight were decreased in both roots and shoots, while arsenic concentration was increased in both rice genotypes. The RNA-seq in DU-OE showed 5823 differentially expressed genes (DEGs), of which 2604 were up-regulated and 3219 down-regulated. Treatment of rice by arsenic and silicon has changed the expression of genes encoding cytokinin-responsive GATA transcription factor 1, protein IN2-1 homolog B, calcium-binding EGF domain-containing protein, Os01g0369700 protein, probable glutathione S-transferase GSTU1, glutathione S-transferase protein, Os09g0367700 protein, isocitrate dehydrogenase (NADP), and Os08g0522400 protein in the root of DU-OE. The present study's findings showed that in the presence of silicon, the transgenic genotype is much more resistant to arsenic than the wild genotype of Dular rice.

19.
BMC Plant Biol ; 21(1): 439, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583646

RESUMO

BACKGROUND: The asynchronous filling between superior spikelets (SS) and inferior spikelets (IS) in rice has become a research hotspot. The stagnant development and poor grain filling of IS limit yields and the formation of good quality rice. A large number of studies on this phenomenon have been carried out from the genome, transcriptome and proteome level, indicating that asynchronous filling of SS and IS filling is a complex, but orderly physiological and biochemical process involving changes of a large number of genes, protein expression and modification. However, the analysis of metabolomics differences between SS and IS is rarely reported currently. RESULTS: This study utilized untargeted metabolomics and identified 162 metabolites in rice spikelets. Among them, 17 differential metabolites associated with unsynchronized grain filling between SS and IS, 27 metabolites were related to the stagnant development of IS and 35 metabolites related to the lower maximum grain-filling rate of IS compared with the SS. We found that soluble sugars were an important metabolite during grain filling for SS and IS. Absolute quantification was used to further analyze the dynamic changes of 4 types of soluble sugars (sucrose, fructose, glucose, and trehalose) between SS and IS. The results showed that sucrose and trehalose were closely associated with the dynamic characteristics of grain filling between SS and IS. The application of exogenous sugar showed that trehalose functioned as a key sugar signal during grain filling of IS. Trehalose regulated the expression of genes related to sucrose conversion and starch synthesis, thereby promoting the conversion of sucrose to starch. The difference in the spatiotemporal expression of TPS-2 and TPP-1 between SS and IS was an important reason that led to the asynchronous change in the trehalose content between SS and IS. CONCLUSIONS: The results from this study are helpful for understanding the difference in grain filling between SS and IS at the metabolite level. In addition, the present results can also provide a theoretical basis for the next step of using metabolites to regulate the filling of IS.


Assuntos
Metaboloma/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sementes/genética , Sementes/crescimento & desenvolvimento
20.
Neurosci Biobehav Rev ; 131: 331-344, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562542

RESUMO

Both pictures and words are frequently employed as experimental stimuli to investigate the neurocognitive mechanisms of emotional processing. However, it remains unclear whether emotional picture processing and emotional word processing share neural underpinnings. To address this issue, we focus on neuroimaging studies examining the implicit processing of affective words and pictures, which require participants to meet cognitive task demands under the implicit influence of emotional pictorial or verbal stimuli. A coordinate-based activation likelihood estimation meta-analysis was conducted on these studies, which revealed no common activation maximum between the picture and word conditions. Specifically, implicit negative picture processing (35 experiments, 393 foci, and 932 subjects) engages the bilateral amygdala, left hippocampus, fusiform gyri, and right insula, which are mainly located in the subcortical network and visual network associated with bottom-up emotional responses. In contrast, implicit negative word processing (34 experiments, 316 foci, and 799 subjects) engages the default mode network and fronto-parietal network including the ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, and dorsomedial prefrontal cortex, indicating the involvement of top-down semantic processing and emotion regulation. Our findings indicate that affective pictures (that intrinsically have an affective valence) and affective words (that inherit the affective valence from their object) modulate implicit emotional processing in different ways, and therefore recruit distinct brain systems.


Assuntos
Encéfalo , Emoções , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Emoções/fisiologia , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Neuroimagem , Córtex Pré-Frontal , Lobo Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...