Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hypertens ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761040

RESUMO

BACKGROUND: Hypertension is a risk factor for atrial fibrillation (AF), and brain and muscle arnt-like protein 1 (Bmal1) regulate circadian blood pressure and is implicated in several fibrotic disorders. Our hypothesis that Bmal1 inhibits atrial fibrosis and susceptibility to AF in salt-sensitive hypertension (SSHT) and our study provide a new target for the pathogenesis of AF induced by hypertension. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). An experimental model was used to measure systolic blood pressure (SBP), left atrial ejection fraction (LAEF), left atrial end-volume index (LAEVI), left atrial index (LAFI), AF inducibility, AF duration, and atrial fibrosis pathological examination and the expression of Baml1 and fibrosis-related proteins (TNF-α and α-SMA) in left atrial tissue. RESULTS: DSH increased TNF-α and α-SMA expression in atrial tissue, level of SBP and LAESVI, atrial fibrosis, AF induction rate and AF duration, and decreased Bmal1 expression in atrial tissue, circadian rhythm of hypertension and level of LAEF and LAFI. Our results also showed that the degree of atrial fibrosis was negatively correlated with Bmal1 expression, but positively correlated with the expression of TNF-α and α-SMA. CONCLUSIONS: We demonstrated that a high-salt diet leads to circadian changes in hypertension due to reduction Bmal1 expression, which plays a crucial role in atrial fibrosis and increased susceptibility to AF in SSHT rats.

2.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400571

RESUMO

Intestinal microbiota is a potential determinant of obesity, with probiotic bile salt hydrolase (BSH) as one of the key mechanisms in the anti-obesity effects. In this study, we present a Lactobacillus acidophilus GOLDGUT-LA100 (LA100) with high BSH activity, good gastric acid and bile salt tolerance, and a potential anti-obesity effect. LA100's anti-obesity effects were evaluated in a high-fat diet-induced, obese mouse model. LA100 administration alleviates high-fat diet-induced pathophysiological symptoms, such as body weight gain, high serum glucose and cholesterol level, hepatic lipid accumulation, and adipose inflammation. These results demonstrate concrete anti-obesity benefit in animal models and show promising applications in future clinical studies.


Assuntos
Lactobacillus acidophilus , Probióticos , Camundongos , Animais , Modelos Animais de Doenças , Obesidade , Probióticos/farmacologia , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(12): 159221, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981705

RESUMO

Polo-like kinase 1 (PLK1) is a serine/threonine kinase involving lipid metabolism and cardiovascular disease. However, its role in atherogenesis has yet to be determined. The aim of this study was to observe the impact of PLK1 on macrophage lipid accumulation and atherosclerosis development and to explore the underlying mechanisms. We found a significant reduction of PLK1 expression in lipid-loaded macrophages and atherosclerosis model mice. Lentivirus-mediated overexpression of PLK1 promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that PLK1 stimulated the phosphorylation of AMP-activated protein kinase (AMPK), leading to activation of the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) pathway and up-regulation of ATP binding cassette transporter A1 (ABCA1) and ABCG1 expression. Injection of lentiviral vector expressing PLK1 increased reverse cholesterol transport, improved plasma lipid profiles and decreased atherosclerotic lesion area in apoE-deficient mice fed a Western diet. PLK1 overexpression also facilitated AMPK and HSL phosphorylation and enhanced the expression of PPARγ, LXRα, ABCA1, ABCG1 and LPL in the aorta. In summary, these data suggest that PLK1 inhibits macrophage lipid accumulation and mitigates atherosclerosis by promoting ABCA1- and ABCG1-dependent cholesterol efflux via the AMPK/PPARγ/LXRα pathway.


Assuntos
Aterosclerose , Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Proteínas de Ciclo Celular/genética , Colesterol/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Serina , Quinase 1 Polo-Like
4.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806358

RESUMO

Hyperactivation of PI3K/AKT/mTOR and MAPK/MEK/ERK signaling pathways is commonly observed in many cancers, including triple-negative breast cancer (TNBC) and melanoma. Moreover, the compensatory upregulation of the MAPK/MEK/ERK pathway has been associated with therapeutic resistance to targeted inhibition of the PI3K/AKT/mTOR pathway, and vice versa. The immune-modulatory effects of both PI3K and MAPK inhibition suggest that inhibition of these pathways might enhance response to immune checkpoint inhibitors (ICIs). ICIs have become the standard-of-care for metastatic melanoma and are recently an option for TNBC when combined with chemotherapy, but alternative options are needed when resistance develops. In this review, we present the current mechanistic understandings, along with preclinical and clinical evidence, that outline the efficacy and safety profile of combinatorial or sequential treatments with PI3K inhibitors, MAPK inhibitors, and ICIs for treatment of malignant melanoma and metastatic TNBC. This approach may present a potential strategy to overcome resistance in patients who are a candidate for ICI therapy with tumors harboring either or both of these pathway-associated mutations.


Assuntos
Melanoma , Neoplasias de Mama Triplo Negativas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
5.
Front Mol Biosci ; 8: 648663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026830

RESUMO

Dysregulation of phosphoinositide 3-kinase (PI3K) signaling is highly implicated in tumorigenesis, disease progression, and the development of resistance to the current standard of care treatments in breast cancer patients. This review discusses the role of PI3K pathway in breast cancer and evaluates the clinical development of PI3K inhibitors in both early and metastatic breast cancer settings. Further, this review examines the evidence for the potential synergistic benefit for the combination treatment of PI3K inhibition and immunotherapy in breast cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...