Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(11): e2308442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225706

RESUMO

Construction of biomimetic models for structural color evolution not only gives new photonic phenomena but also provide cues for biological morphogenesis. Here, a novel confined self-assembly method is proposed for the generation of hydroxypropyl cellulose (HPC)-based cholesteric liquid crystals (CLCs) microbubbles. The assembly process relies on the combination of droplet microfluidics, solvent extraction, and a volume confined environment. The as-prepared HPC structural color microbubbles have a transparent shell, an orderly arranged cholesteric liquid crystal (CLC) middle layer, and an innermost bubble core. The size of the microbubble, shell thickness, and the color of the CLC layer can be adjusted by altering the microfluidic parameters. Intriguingly, benefited from the compartmentalization effect provided by droplet microfluidics, microbubbles with multiple cores of different color combinations are generated under precise control. The self-assembled CLCs microbubbles have bright structural color, suspending ability, and good temperature-sensitive characteristics, making them ideal underwater sensors. The present confined assembly approach will shed light on creating novel photonic structures and the HPC microbubble will find widespread applications in multifunctional sensing, optical display, and other related fields are believed.

3.
Adv Mater ; 35(36): e2300220, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37235719

RESUMO

Liquid crystal is a state of matter being intermediate between solid and liquid. Liquid crystal materials exhibit both orientational order and fluidity. While liquid crystals have long been highly recognized in the display industry, in recent decades, liquid crystals provide new opportunities into the cross-field of material science and biomedicine due to their biocompatibility, multifunctionality, and responsiveness. In this review, the latest achievements of liquid crystal materials applied in biomedical fields are summarized. The start is made by introducing the basic concepts of liquid crystals, and then shifting to the components of liquid crystals as well as functional materials derived therefrom. After that, the ongoing and foreseeable applications of liquid crystal materials in the biomedical field with emphasis put on several cutting-edge aspects, including drug delivery, bioimaging, tissue engineering, implantable devices, biosensing, and wearable devices are discussed. It is hoped that this review will stimulate ingenious ideas for the future generation of liquid crystal-based drug development, artificial implants, disease diagnosis, health status monitoring, and beyond.


Assuntos
Cristais Líquidos , Dispositivos Eletrônicos Vestíveis , Cristais Líquidos/química , Materiais Biocompatíveis/química , Próteses e Implantes , Sistemas de Liberação de Medicamentos
4.
Research (Wash D C) ; 6: 0083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36939415

RESUMO

Drug therapy is among the most widely used methods in disease treatment. However, there remains a trade-off problem between drug dosage and toxicity. Blood purification by adsorption of excessive drugs during clinical treatment could be a solution for enhancing therapeutic efficacy while maintaining normal body function. Here, inspired by the intrinsic action mechanism of chemotherapeutic agents in targeting DNA in the cell nucleus, we present DNA-polyelectrolyte composite responsive microparticles for chemotherapeutics cleaning. The presence of DNA in the microparticles enabled the adsorption of multiple common chemotherapy drugs. Moreover, the microparticles are endowed with a porous structure and a photothermal-responsive ability, both of which contribute to improved adsorption by enhancing the contact of the microparticles with the drug solution. On the basis of that, the microparticles are integrated into a herringbone-structured microfluidic chip. The fluid mixing capacity and the enhanced drug cleaning efficiency of the microfluidic platform are validated on-chip. These results indicate the value of the DNA-polyelectrolyte composite responsive microparticles for drug capture and blood purification. We believe the microparticle-integrated microfluidic platform could provide a solution for settling the dosage-toxicity trade-off problems in chemotherapy.

5.
Sci Bull (Beijing) ; 67(5): 512-519, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546172

RESUMO

Structural colors, derived from existing natural creatures, have aroused widespread attention in the materials regulation for different applications. Here, inspired by the color adjusting mechanism of hummingbird, we present a novel shape-memory structural color hydrogel film by introducing shape memory polymers (SMPs) into synthetic inverse opal scaffold structure. The excellent flexibility as well as the inverse opal structure of the hydrogel films imparts them with stable stretchability and brilliant structural colors. Benefiting from the transient structural anisotropy of copolymers, the hybrid films are possessed with shape-morphing behaviors capability. Based on the shape transformations and color responsiveness performance, we have demonstrated diverse structural color actuators with complex shapes for different tasks. Notably, as the photothermal responsive graphene quantum dots were integrated into the hydrogel, the hybrid films could also be endowed with the feature of light-controlled reversible deformation with synchronous structural color variation. These features demonstrate that the presented shape-memory structural color hydrogel film is valuable for soft robotics with multi-functions of sensing, communication and disguise.


Assuntos
Hidrogéis , Polímeros , Anisotropia , Hidrogéis/química , Metilgalactosídeos , Polímeros/química
6.
ACS Appl Mater Interfaces ; 14(41): 46212-46223, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36206492

RESUMO

Local drug delivery has become an effective method for disease therapy in fine organs including ears, eyes, and noses. However, the multiple anatomical and physiological barriers, unique clearance pathways, and sensitive perceptions characterizing these organs have led to suboptimal drug delivery efficiency. Here, we developed dexamethasone sodium phosphate-encapsulated gelatin methacryloyl (Dexsp@GelMA) microgel particles, with finely tunable size through well-designed microfluidics, as otic drug delivery vehicles for hearing loss therapy. The release kinetics, encapsulation efficiency, drug loading efficiency, and cytotoxicity of the GelMA microgels with different degrees of methacryloyl substitution were comprehensively studied to optimize the microgel formulation. Compared to bulk hydrogels, Dexsp@GelMA microgels of certain sizes hardly cause air-conducted hearing loss in vivo. Besides, strong adhesion of the microgels on the round window membrane was demonstrated. Moreover, the Dexsp@GelMA microgels, via intratympanic administration, could ameliorate acoustic noise-induced hearing loss and attenuate hair cell loss and synaptic ribbons damage more effectively than Dexsp alone. Our results strongly support the adhesive and intricate microfluidic-derived GelMA microgels as ideal intratympanic delivery vehicles for inner ear disease therapies, which provides new inspiration for microfluidics in drug delivery to the fine organs.


Assuntos
Perda Auditiva , Microgéis , Humanos , Microfluídica , Gelatina , Hidrogéis , Perda Auditiva/tratamento farmacológico , Excipientes
7.
J Nanobiotechnology ; 20(1): 355, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918727

RESUMO

BACKGROUND: Wound healing has become a worldwide healthcare issue. Attempts in the area focus on developing patches with the capabilities of avoiding wound infection, promoting tissue remolding, and reporting treatment status that are of great value for wound treatment. RESULTS: In this paper, we present a novel inverse opal film (IOF) patch based on a photo-crosslinking fish gelatin hydrogel with the desired features for wound healing and dynamic monitoring. The film with vibrant structure colors was constructed by using the mixture of fish gelatin methacryloyl, chitosan, and polyacrylic acid (PAA) to replicate colloidal crystal templates. As the structures of these natural biomolecules are well-retained during the fabrication, the resultant IOF was with brilliant biocompatibility, low immunogenicity, antibacterial property, as well as with the functions of promoting tissue growth and wound healing. In addition, the IOF presented interconnected nanopores and high specific surface areas for vascular endothelial growth factor loading, which could further improve its angiogenesis capability. More attractively, as the pH-responsive PAA was incorporated, the IOF patch could report the wound healing status through its real-time structural colors or reflectance spectra. CONCLUSIONS: These features implied the practical value of the multifunctional fish gelatin hydrogel IOFs in clinical wound management.


Assuntos
Gelatina , Hidrogéis , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Gelatina/química , Hidrogéis/farmacologia , Metacrilatos , Fator A de Crescimento do Endotélio Vascular , Cicatrização
8.
Mater Today Bio ; 16: 100352, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35856044

RESUMO

Biohybrid materials are proceeded by integrating living cells and non-living materials to endow materials with biomimetic properties and functionalities by supporting cell proliferation and even enhancing cell functions. Due to the outstanding biocompatibility and programmability, biohybrid materials provide some promising strategies to overcome current problems in the biomedical field. Here, we review the concept and unique features of biohybrid materials by comparing them with conventional materials. We emphasize the structure design of biohybrid materials and discuss the structure-function relationships. We also enumerate the application aspects of biohybrid materials in biomedical frontiers. We believe this review will bring various opportunities to promote the communication between cell biology, material sciences, and medical engineering.

9.
Small ; 18(27): e2201889, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35678090

RESUMO

Microneedle arrays (MNs) have a demonstrated value in transdermal drug delivery systems. Attempts to this technology focus on the generation of functional MNs to achieve intelligent drug delivery. Here, multifunctional inverse opal microneedle (IOMN) arrays with the abilities are reported to load various drugs and monitor drug release. The IOMNs are generated by using poly(ethylene glycol) diacrylate (PEGDA) to replicate hierarchical structure templates that are composed of self-assembled silica colloidal nanoparticles in the inverted cone structure wells. Because of their interconnected porous structures, different actives, or drugs can be loaded into the IOMNs without organic solvents and chemical polymerization. It is demonstrated that when these drugs loaded IOMNs pierce the skin at position of interest and for slow release, the average refractive index of the IOMNs decreases with the release process, resulting in a corresponding blueshift of their characteristic spectrum. Thus, by measuring the wavelength shift value of the IOMNs, the amount of released drugs can be monitored, providing essential guidance for efficient clinical treatment. These features indicate that the IOMNs are valuable smart drug delivery systems in personalized therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Agulhas , Preparações Farmacêuticas/metabolismo , Pele/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(23): e2204113119, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639690

RESUMO

SignificanceWe propose a printable structural color ink composed of cholesteric cellulose liquid crystals together with gelatin and a thermal-responsive hydrogel. The ink is endowed with vivid structural colors and printability due to its constituents. Based on this, we print a series of graphics and three-dimensional (3D) objects with vivid color appearances. Moreover, the printed objects possess dual thermal responsiveness, which results in visible color change around body temperature. These performances, together with the biocompatibility of the constituents, indicate that the present ink represents a leap forward to the next-generation 3D printing and would unlock a wide range of real-life applications.

11.
Small ; 18(36): e2105116, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35038215

RESUMO

Taking inspiration from the extremely flexible motion abilities in natural organisms, soft actuators have emerged in the past few decades. Particularly, smart film actuators (SFAs) demonstrate unique superiority in easy fabrication, tailorable geometric configurations, and programmable 3D deformations. Thus, they are promising in many biomedical applications, such as soft robotics, tissue engineering, delivery system, and organ-on-a-chip. In this review, the latest achievements of SFAs applied in biomedical fields are summarized. The authors start by introducing the fabrication techniques of SFAs, then shift to the topology design of SFAs, followed by their material selections and distinct actuating mechanisms. After that, their biomedical applications are categorized in practical aspects. The challenges and prospects of this field are finally discussed. The authors believe that this review can boost the development of soft robotics, biomimetics, and human healthcare.


Assuntos
Biomimética , Robótica , Humanos , Movimento (Física)
12.
Adv Mater ; 34(13): e2108972, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35065539

RESUMO

Lung-on-a-chip models hold great promise for disease modeling and drug screening. Herein, inspired by the iridescence phenomenon of soap bubbles, a novel biomimetic 3D microphysiological lung-on-a-chip system with breathing visualization is presented. The system, with an array of pulmonary alveoli at the physiological scale, is constructed and coated with structural color materials. Cyclic deformation is induced by regular airflow, resembling the expansion and contraction of the alveoli during rhythmic breathing. As the deformation is accompanied with corresponding synchronous shifts in the structural color, the constructed system offers self-reporting of the cell mechanics and enables real-time monitoring of the cultivation process. Using this system, the dynamic relationships between the color atlas and disease symptoms, showing the essential role of mechanical stretching in the phenotypes of idiopathic pulmonary fibrosis, are investigated. These features make this human lung system ideal in biological study, disease monitoring, and drug discovery.


Assuntos
Biomimética , Dispositivos Lab-On-A-Chip , Humanos , Pulmão , Alvéolos Pulmonares , Respiração
13.
Adv Healthc Mater ; 10(23): e2101580, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599859

RESUMO

Bioartificial liver (BAL) system has become a promising alternative to traditional liver transplantation in rescuing acute liver failure (ALF) patients. Herein, inspired by natural microstructure of hepatic lobules, a novel biomimetic bioartificial liver system (BBALS) is developed by integrating human induced pluripotent stem cell-derived hepatocytes (hiPSC-Heps) -laden microparticles and semipermeable microtubes into a microfluidic platform. As the working units are hepatic lobules-like semipermeable microtubes surrounding with serum-free suspension differentiated hiPSC-Heps microcarriers, the BBALS is endowed with functional cell aggregates and effective circulation system. Thus, the BBALS possesses high cell viability, favorable function regeneration, and effective substances exchange. Based on these features, a 3D liver chip with multiple parallel BBALS units is created for filtering the plasma of ALF rabbits, which validates the research significance and application potential of the proposed BBALS. Moreover, the novel integrated BBALS is applied to treat ALF rabbits and shows great advantages in increasing survival, generating serum proteins, and decreasing inflammation. These properties point to the broad prospects of BBALS in treating related diseases and improving traditional clinical methods.


Assuntos
Células-Tronco Pluripotentes Induzidas , Falência Hepática Aguda , Fígado Artificial , Animais , Hepatócitos , Humanos , Fígado , Falência Hepática Aguda/terapia , Coelhos
14.
ACS Appl Mater Interfaces ; 13(16): 18413-18422, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856190

RESUMO

The in-depth development of biological materials, especially natural polymer materials, has injected strong vitality into clinical wound treatment. Here, a new type of controllable responsive microparticles composed of several natural polymer materials was presented for drug release and wound healing. These hybrid microparticles consisted of silk fibroin, gelatin, agarose, and black phosphorus quantum dots (BPQDs) and were loaded with growth factors and antibacterial peptides. Under near-infrared (NIR) irradiation, BPQDs could absorb the NIR light and increase the temperature of the microparticles to the melting point of gelatin. When the gelatin started to melt, the encapsulated drugs were gradually released because of the reversible phase transformation. Both in vitro and in vivo experiments have demonstrated that the BPQD-laden microparticles with a NIR-responsive feature could achieve the desired controllable release of growth factors to promote neovascularization formation. In addition, because antibacterial peptides were also mixed with the secondary hydrogel and encapsulated in the scaffolds, the microparticles are imparted with the antibacterial ability during storage and usage. These characteristics of BPQD-laden natural protein hybrid microparticles make them ideal for drug delivery and wound healing.


Assuntos
Portadores de Fármacos/química , Microesferas , Proteínas/química , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Liberação Controlada de Fármacos , Gelatina/química , Hidrogéis/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Pontos Quânticos/química , Sefarose/química
15.
Proc Natl Acad Sci U S A ; 117(31): 18310-18316, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675247

RESUMO

Bionic electronic skin (E-skin) that could convert external physical or mechanical stimuli into output signals has a wide range of applications including wearable devices, artificial prostheses, software robots, etc. Here, we present a chameleon-inspired multifunctional E-skin based on hydroxypropyl cellulose (HPC), Poly(Acrylamide-co-Acrylic acid) (PACA), and carbon nanotubes (CNTs) composited liquid-crystal hydrogel. We found that the HPC could still form cholesteric liquid-crystal photonic structures with the CNTs additive for enhancing their color saturation and PACA polymerization for locating their assembled periodic structures. As the composite hydrogel containing HPC elements and the PACA scaffold responds to different stimuli, such as temperature variations, mechanical pressure, and tension, it could correspondingly change its volume or internal nanostructure and report these as visible color switches. In addition, due to the additive of CNTs, the composite hydrogel could also output these stimuli as electrical resistance signals. Thus, the hydrogel E-skins had the ability of quantitatively feeding back external stimuli through electrical resistance as well as visually mapping the stimulating sites by color variation. This dual-signal sensing provides the ability of visible-user interaction as well as antiinterference, endowing the multifunctional E-skin with great application prospects.


Assuntos
Celulose/química , Condutividade Elétrica , Hidrogéis/química , Cristais Líquidos , Dispositivos Eletrônicos Vestíveis , Cor , Fenômenos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...