Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Crit Rev Anal Chem ; : 1-20, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662629

RESUMO

Targeted gels have been attractive and regarded as a kind of promising adsorptive media for bioanalysis due to their advantages of high specific surface area, enough stability, and adjustable porous structure. Recently, targeted gel media have been applied for separation and enrichment of various biomolecules from different biological samples. Moreover, targeted gel media have been introduced into surface-enhanced Raman scattering (SERS) technology to eliminate matrix effect for rapid and accurate analysis of biological samples. In this article, we introduced the preparation methods of targeted gel media including in-situ polymerization method, self-assembly method and one-pot method. Then, the functions of targeted gel media in bioanalysis including separation-enrichment media, SERS substrates, and target-responsive units were also reviewed in detail. Additionally, the applications of targeted gel media for biomarker analysis, bioimaging analysis and cell engineering were further discussed. Finally, we tried to elucidate the trend and perspective into the future landscape of targeted gel media for bioanalysis.

2.
Talanta ; 273: 125901, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503122

RESUMO

Aromatic disinfection by-products (DBPs) have garnered considerable interest in recent years for their potential carcinogenicity. However, efficient separation and enrichment of DBPs in complex samples is a challenge due to the extremely low content of aromatic DBPs and the complexity of sample matrices. In this study, a MIL-101(Cr)-NH2@TAPB-DVA-COF hybrid material was prepared as the enrichment medium of membrane solid-phase extraction (M-SPE) to efficiently determine trace emerging aromatic DBPs. This medium exhibited excellent enrichment capacity and selectivity for aromatic DBPs because of the strong hydrogen bonding, π-π stacking and hydrophobic interactions. An efficient analytical method for five aromatic DBPs in juice drinks was successfully established by use of this hybrid material as the enrichment medium for M-SPE in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS). The limits of detection of the established method were from 0.50 to 3.00 ng/L. Moreover, the method had been successfully used in real juice drinks to determine trace five aromatic DBPs with the spiked recoveries ranging from 84.1% to 125%. The method possessed high analytical sensitivity and accuracy for these five aromatic DBPs in juice drinks with the aid of the efficient M-SPE technology proposed.


Assuntos
Benzamidinas , Desinfecção , Estruturas Metalorgânicas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Desinfecção/métodos , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos
3.
Mater Horiz ; 11(8): 2041-2042, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38506055

RESUMO

Correction for 'Exploring the Mpemba effect: a universal ice pressing enables porous ceramics' by Xiaodan Yang et al., Mater. Horiz., 2024, DOI: https://doi.org/10.1039/d3mh01869e.

4.
J Chromatogr A ; 1720: 464775, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38452559

RESUMO

The contents of target substances in biological samples are usually at low concentration levels, and the matrix of biological samples is usually complex. Sample preparation is considered a very critical step in bioanalysis. At present, the utilization of microextraction sampling technology has gained considerable prevalence in the realm of biological analysis. The key developments in this field focus on the efficient microextraction media and the miniaturization and automation of adaptable sample preparation methods currently. In this review, the recent progress on the microextraction sampling technologies for bioanalysis has been introduced from point of view of the preparation of microextraction media and the microextraction sampling strategies. The advance on the microextraction media was reviewed in detail, mainly including the aptamer-functionalized materials, molecularly imprinted polymers, carbon-based materials, metal-organic frameworks, covalent organic frameworks, etc. The advance on the microextraction sampling technologies was summarized mainly based on in-vivo sampling, in-vitro sampling and microdialysis technologies. Moreover, the current challenges and perspective on the future trends of microextraction sampling technologies for bioanalysis were briefly discussed.


Assuntos
Microextração em Fase Sólida , Manejo de Espécimes , Microextração em Fase Sólida/métodos , Tecnologia , Polímeros Molecularmente Impressos , Automação
5.
Mater Horiz ; 11(8): 1899-1907, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38314804

RESUMO

Piezoceramics with global porosity and local compaction are highly desired to exploit the combination of mechanical and electrical properties. However, achieving such a functional combination is challenging because of the lack of techniques for applying uniform pressure inside porous ceramic green parts. Nature provides many examples of generating strong forces inside the macro and micro channels via the state transformation of water. Inspired by these phenomena, we present a technique of "ice and fire", that is, water freezing (ice pressing) and high-temperature sintering (fire), to produce ideal porous piezoceramics. We introduce a new compaction method called the "ice pressing method", which manipulates liquid phase transition for compaction. This method has several advantages, including uniform pressure distribution, a wide pressure range, high effectiveness, and selective freezing. It can generate an ultrahigh pressure of up to 180 MPa on the piezoceramic green skeletons in minutes while retaining their functional pore structures. By exploiting the Mpemba phenomenon, we further accelerate the compaction procedure by 11%. The first ice-pressed and second fire-consolidated lead zirconate titanate (PZT) ceramics are highly densified and exhibit an outstanding piezoelectric response (d33 = 531 pC N-1), comparable to conventional pressed bulk counterparts and 10-20 times higher than those of unpressed materials. The novel ice pressing method breaks the limitation of lacking a compaction technique for porous ceramics. The versatile and effective ice pressing method is a green and low-cost route promoting applications in sensors, acoustics, water filtration, catalyst substrates, and energy harvesting.

6.
Adv Mater ; 36(3): e2308502, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37862005

RESUMO

The demand for economical and efficient data processing has led to a surge of interest in neuromorphic computing based on emerging two-dimensional (2D) materials in recent years. As a rising van der Waals (vdW) p-type Weyl semiconductor with many intriguing properties, tellurium (Te) has been widely used in advanced electronics/optoelectronics. However, its application in floating gate (FG) memory devices for information processing has never been explored. Herein, an electronic/optoelectronic FG memory device enabled by Te-based 2D vdW heterostructure for multimodal reservoir computing (RC) is reported. When subjected to intense electrical/optical stimuli, the device exhibits impressive nonvolatile electronic memory behaviors including ≈108 extinction ratio, ≈100 ns switching speed, >4000 cycles, >4000-s retention stability, and nonvolatile multibit optoelectronic programmable characteristics. When the input stimuli weaken, the nonvolatile memory degrades into volatile memory. Leveraging these rich nonlinear dynamics, a multimodal RC system with high recognition accuracy of 90.77% for event-type multimodal handwritten digit-recognition is demonstrated.

7.
Anal Chem ; 95(49): 18149-18157, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044549

RESUMO

Improving the speediness of complex sample analysis has attracted much research interest in analytical science. In this work, an enrichment-sensing all-in-one strategy was presented for rapid surface-enhanced Raman spectroscopy (SERS) analysis of purine components by using the La(OH)3-Au@AgNPs nanocomposite. Two-dimensional (2D) La(OH)3 nanosheets with nanothickness and accessible active sites not only acted as efficient media for the rapid enrichment of analytes but also provided flat planes for the intensive decoration of Au@AgNPs nanoparticles to amplify the SERS signals of adsorbed analytes. The nanocomposite could realize the rapid enrichment-sensing of purine components in 1 min, including mercaptopurine, thioguanine, adenine, and purine. Subsequently, the surface adsorption behaviors were explored by density functional theory and the enhancement mechanisms were simulated by the finite-difference time-domain method. Moreover, the nanocomposite also exhibited good SERS performances with relative standard deviations (RSDs) of uniformity less than 6.5% (n = 23), RSDs of batch-to-batch stability less than 7.3% (n = 9), and long-term stability over 9 weeks with RSDs within 6.6%. Finally, the enrichment-sensing strategy was applied for the rapid SERS analysis of two projects: mercaptopurine in tablets and adenine in beers with detection limits of 6.0 and 0.76 µg/L and spiked recoveries of 90.9-100 and 84.2-101%, respectively. Benefiting from the high-performance enrichment medium and closely packed plasmonic nanoparticles, the enrichment-sensing all-in-one strategy possesses great potential for rapid on-site detection in food safety and pharmaceutical analysis.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Análise Espectral Raman/métodos , Mercaptopurina , Nanocompostos/química , Adenina , Nanopartículas Metálicas/química
8.
Nat Commun ; 14(1): 6488, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838731

RESUMO

Nanoparticles, films, and patterns are three critical piezoelectric elements with widespread applications in sensing, actuations, catalysis and energy harvesting. High productivity and large-area fabrication of these functional elements is still a significant challenge, let alone the control of their structures and feature sizes on various substrates. Here, we report a fast and versatile electrostatic disc microprinting, enabled by triggering the instability of liquid-air interface of inks. The printing process allows for fabricating lead zirconate titanate free-standing nanoparticles, films, and micro-patterns. The as-fabricated lead zirconate titanate films exhibit a high piezoelectric strain constant of 560 pm V-1, one to two times higher than the state-of-the-art. The multiplexed tip jetting mode and the large layer-by-layer depositing area can translate into depositing speeds up to 109 µm3 s-1, one order of magnitude faster than current techniques. Printing diversified functional materials, ranging from suspensions of dielectric ceramic and metal nanoparticles, to insulating polymers, to solutions of biological molecules, demonstrates the great potential of the electrostatic disc microprinting in electronics, biotechnology and beyond.

9.
Biosensors (Basel) ; 13(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37504092

RESUMO

DNA-mediated nanotechnology has become a research hot spot in recent decades and is widely used in the field of biosensing analysis due to its distinctive properties of precise programmability, easy synthesis and high stability. Multi-mode analytical methods can provide sensitive, accurate and complementary analytical information by merging two or more detection techniques with higher analytical throughput and efficiency. Currently, the development of DNA-mediated multi-mode analytical methods by integrating DNA-mediated nanotechnology with multi-mode analytical methods has been proved to be an effective assay for greatly enhancing the selectivity, sensitivity and accuracy, as well as detection throughput, for complex biological analysis. In this paper, the recent progress in the preparation of typical DNA-mediated multi-mode probes is reviewed from the aspect of deoxyribozyme, aptamer, templated-DNA and G-quadruplex-mediated strategies. Then, the advances in DNA-mediated multi-mode analytical methods for biological samples are summarized in detail. Moreover, the corresponding current applications for biomarker analysis, bioimaging analysis and biological monitoring are introduced. Finally, a proper summary is given and future prospective trends are discussed, hopefully providing useful information to the readers in this research field.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , DNA , Nanotecnologia , Sondas de DNA , Oligonucleotídeos
10.
Nat Commun ; 14(1): 4094, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433769

RESUMO

Piezoelectric biomaterials have attracted great attention owing to the recent recognition of the impact of piezoelectricity on biological systems and their potential applications in implantable sensors, actuators, and energy harvesters. However, their practical use is hindered by the weak piezoelectric effect caused by the random polarization of biomaterials and the challenges of large-scale alignment of domains. Here, we present an active self-assembly strategy to tailor piezoelectric biomaterial thin films. The nanoconfinement-induced homogeneous nucleation overcomes the interfacial dependency and allows the electric field applied in-situ to align crystal grains across the entire film. The ß-glycine films exhibit an enhanced piezoelectric strain coefficient of 11.2 pm V-1 and an exceptional piezoelectric voltage coefficient of 252 × 10-3 Vm N-1. Of particular significance is that the nanoconfinement effect greatly improves the thermostability before melting (192 °C). This finding offers a generally applicable strategy for constructing high-performance large-sized piezoelectric bio-organic materials for biological and medical microdevices.


Assuntos
Materiais Biocompatíveis , Fabaceae , Sistemas de Liberação de Medicamentos , Eletricidade , Glicina
11.
ACS Appl Mater Interfaces ; 15(29): 35196-35205, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459597

RESUMO

Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe2 in different phases as the charge-trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where a metallic 1T'-MoTe2 or semiconducting 2H-MoTe2 nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T'-MoTe2 presents much better performance, including a larger memory window, faster switching speed (100 ns), and higher extinction ratio (107), than that of the device based on the MoS2/h-BN/2H-MoTe2 heterostructure. Moreover, the device based on the MoS2/h-BN/1T'-MoTe2 heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.

12.
Nanomicro Lett ; 15(1): 131, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209322

RESUMO

Most electronics such as sensors, actuators and energy harvesters need piezoceramic films to interconvert mechanical and electrical energy. Transferring the ceramic films from their growth substrates for assembling electronic devices commonly requires chemical or physical etching, which comes at the sacrifice of the substrate materials, film cracks, and environmental contamination. Here, we introduce a van der Waals stripping method to fabricate large-area and freestanding piezoceramic thin films in a simple, green, and cost-effective manner. The introduction of the quasi van der Waals epitaxial platinum layer enables the capillary force of water to drive the separation process of the film and substrate interface. The fabricated lead-free film, [Formula: see text] (BCZT), shows a high piezoelectric coefficient d33 = 209 ± 10 pm V-1 and outstanding flexibility of maximum strain 2%. The freestanding feature enables a wide application scenario, including micro energy harvesting, and covid-19 spike protein detection. We further conduct a life cycle analysis and quantify the low energy consumption and low pollution of the water-based stripping film method.

13.
Anal Chim Acta ; 1259: 341159, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100472

RESUMO

A bioinspired Au@Ag nanodome-cones array (Au@Ag NDCA) surface-enhanced Raman scattering (SERS) chip was developed for efficient residue analyses of food samples. The cicada wing inspired Au@Ag NDCA chip was fabricated by a bottom-up method, Au nanocones array was firstly grown onto nickel foil by displacement reaction and cetyltrimethylammonium bromide guidance growth, and then silver shell with controllable thickness was coated onto the Au nanocones array by magnetron sputtering. The Au@Ag NDCA chip exhibited good SERS performances with high enhancement factor of 1.2 × 108, good uniformity with relative standard deviation (RSD) less than 7.5% (n = 25), good inter-batch reproducibility with RSD less than 9.4% (n = 9), and long-term stability over 9 weeks. By adapting a minimized sample preparation, Au@Ag NDCA chip combined with a 96-well plate could realize high-throughput SERS analyses of 96 samples with average analysis time less than 10 min. The substrate was applied for quantitative analyses of two food projects. One was 6-benzylaminopurine auxin residue in sprout samples with detection limit of 38.8 µg/L, recoveries of 93.3-105.4% and RSDs of 1.5-6.5%, and the other was an edible spice of 4-amino-5,6-dimethylthieno (2,3-d) pyrimidin-2(1H)-one hydrochloride additive in beverage samples with detection limit of 18.0 µg/L, recoveries of 96.2-106.6% and RSDs of 3.5-7.9%. All the SERS results were well confirmed by conventional high-performance liquid chromatographic methods with relative errors less than 9.7%. The robust Au@Ag NDCA chip exhibited good analytical performances possessed great potential for convenient and reliable analyses of food quality and safety.


Assuntos
Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos , Prata/química
14.
Adv Mater ; 35(20): e2211598, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36857506

RESUMO

Although 2D materials are widely explored for data storage and neuromorphic computing, the construction of 2D material-based memory devices with optoelectronic responsivity in the short-wave infrared (SWIR) region for in-sensor reservoir computing (RC) at the optical communication band still remains a big challenge. In this work, an electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals (vdW) heterostructure is reported, where the ferroelectric CuInP2 S6 and tellurium channel endow this device with both the long-term potentiation/depression by voltage pulses and short-term potentiation by 1550 nm laser pulses (a typical wavelength in the conventional fiber optical communication band). Leveraging the rich dynamics, a fully memristive in-sensor RC system that can simultaneously sense, decode, and learn messages transmitted by optical fibers is demonstrated. The reported 2D vdW heterostructure-based memory featuring both the long-term and short-term memory behaviors using electrical and optical pulses in SWIR region has not only complemented the wide spectrum of applications of 2D materials family in electronics/optoelectronics but also paves the way for future smart signal processing systems at the edge.

15.
Anal Chem ; 95(14): 5946-5954, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972417

RESUMO

DNA-mediated self-assembly technology with good sensitivity and affinity ability has been rapidly developed in the field of probe sensing. The efficient and accurate quantification of lactoferrin (Lac) and iron ions (Fe3+) in human serum and milk samples by the probe sensing method can provide useful clues for human health and early diagnosis of anemia. In this paper, contractile hairpin DNA-mediated dual-mode probes of Fe3O4/Ag-ZIF8/graphitic quantum dot (Fe3O4/Ag-ZIF8/GQD) NPs were prepared to realize the simultaneous quantification of Lac by surface-enhanced Raman scattering (SERS) and Fe3+ by fluorescence (FL). In the presence of targets, these dual-mode probes would be triggered by the recognition of aptamer and release GQDs to produce FL response. Meanwhile, the complementary DNA began to shrink and form a new hairpin structure on the surface of Fe3O4/Ag, which produced hot spots and generated a good SERS response. Thus, the proposed dual-mode analytical strategy possessed excellent selectivity, sensitivity, and accuracy due to the dual-mode switchable signals from "off" to "on" in SERS mode and from "on" to "off" in FL mode. Under the optimized conditions, a good linear range was obtained in the range of 0.5-100.0 µg/L for Lac and 0.01-5.0 µmol/L for Fe3+ and with detection limits of 0.14 µg/L and 3.8 nmol/L, respectively. Finally, the contractile hairpin DNA-mediated SERS-FL dual-mode probes were successfully applied in the simultaneous quantification of iron ion and Lac in human serum and milk samples.


Assuntos
Conformação de Ácido Nucleico , Análise Espectral Raman , Ferro/química , Cátions/química , Fluorescência , Lactoferrina/análise , Lactoferrina/química , DNA/química , Sondas de DNA/química , Nanopartículas Metálicas , Humanos , Leite Humano/química
16.
Adv Mater ; 35(12): e2210854, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36621966

RESUMO

Atomically 2D layered ferroelectric semiconductors, in which the polarization switching process occurs within the channel material itself, offer a new material platform that can drive electronic components toward structural simplification and high-density integration. Here, a room-temperature 2D layered ferroelectric semiconductor, bismuth oxychalcogenides (Bi2 O2 Se), is investigated with a thickness down to 7.3 nm (≈12 layers) and piezoelectric coefficient (d33 ) of 4.4 ± 0.1 pm V-1 . The random orientations and electrically dependent polarization of the dipoles in Bi2 O2 Se are separately uncovered owing to the structural symmetry-breaking at room temperature. Specifically, the interplay between ferroelectricity and semiconducting characteristics of Bi2 O2 Se is explored on device-level operation, revealing the hysteresis behavior and memory window (MW) formation. Leveraging the ferroelectric polarization originating from Bi2 O2 Se, the fabricated device exhibits "smart" photoresponse tunability and excellent electronic characteristics, e.g., a high on/off current ratio > 104 and a large MW to the sweeping range of 47% at VGS  = ±5 V. These results demonstrate the synergistic combination of ferroelectricity with semiconducting characteristics in Bi2 O2 Se, laying the foundation for integrating sensing, logic, and memory functions into a single material system that can overcome the bottlenecks in von Neumann architecture.

17.
Anal Chem ; 94(47): 16275-16281, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36383354

RESUMO

Complex and tedious sample preparation processes have greatly limited rapid analyses of biological samples. In this work, an all-in-one sample preparation strategy based on a miniaturized gas membrane separation/oven ring enrichment (GMS/ORE) device was developed for efficient surface enhanced Raman scattering (SERS) analyses of trace biomarkers in biofluid samples. This strategy integrating gasification separation, liquid trapping, derivatization SERS activation, and coffee-ring enrichment could highly promote the efficiency of sample preparation. Meanwhile, the edges of membranes modified by the hydrophobic-infusing slippery liquid-induced uniform "coffee-ring" effect could significantly improve the sensitivity and stability for SERS quantification. By adapting proper derivatization approaches to the miniaturized GMS/ORE pretreatment, the matrix effects in samples could be prominently eliminated, and clear SERS responses could be obtained for the selective analyses of target biomarkers. The miniaturized GMS/ORE device was practically applied for SERS analyses of trace biomarkers in biofluids, including hydrogen sulfide in saliva samples, creatinine in serum samples, and sarcosine, creatinine, and dimethyl disulfide in urine samples. Accurate quantification of all biomarkers was achieved with recoveries of 89.5%-120.0%, and the contents found by GMS/ORE-SERS matched well with those found by corresponding chromatographic methods with relative errors from -8.6% to 9.3%. The miniaturized GMS/ORE device with multiple parallel processing units could simultaneously treat eight samples in one run with a total analysis time of 40 min. Such an efficient all-in-one strategy integrated on a miniaturized device possesses great potential for fast on-site/point-of-care detection in analytical science and clinical medicine.


Assuntos
Gases , Análise Espectral Raman , Análise Espectral Raman/métodos , Creatinina , Biomarcadores/análise
18.
J Chromatogr A ; 1675: 463181, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35660320

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a powerful and promising analytical technique for fast, non-destructive, and sensitive analysis of trace analytes. However, the serious matrix interference effect of complex sample is a bottleneck that limited rapid SERS analysis. Therefore, it is essential to introduce proper sample preparation techniques to address the limitation for advancing SERS analysis. With adaptable sample preparation techniques, target substances could be separated and purified from complex matrices, matrix interference effect could be eliminated/reduced, and finally pure SERS spectra could be obtained. However, the process of traditional sample preparation usually requires the tedious and time-consuming operation, large solvent consumption, high labor intensity, as well as low efficiency. Given that SERS is an ultrafast analytical technique, there is a great desire to develop advanced/modern sample preparation techniques for fast and efficient analysis of complex samples. To attract much attention and raise research enthusiasm on the beginning, recent development on advanced sample preparation techniques for rapid SERS analysis of complex sample was reviewed. (1) 'All-in-one' strategy for simultaneous separation, enrichment, and in-situ SERS detection. (2) Integrated strategy for high-speed pretreatment and high throughput analysis. (3) Derivatization strategy switches on the SERS activity of molecules with weak responses. (4) Field-assisted strategy for preconcentration acceleration. (5) Instrument combination strategy for online processing and real-time SERS analysis. Finally, conclusions and perspectives on future development were briefly discussed.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos
19.
Angew Chem Int Ed Engl ; 61(30): e202203088, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35560775

RESUMO

Self-assembled monolayers (SAMs) have been widely employed as an effective way to modify interfaces of electronic/optoelectronic devices. To achieve a good control of the growth and molecular functionality of SAMs, we develop a co-assembled monolayer (co-SAM) for obtaining efficient hole selection and suppressed recombination at the hole-selective interface in inverted perovskite solar cells (PSCs). By engineering the position of methoxy substituents, an aligned energy level and favorable dipole moment can be obtained in our newly synthesized SAM, ((2,7-dimethoxy-9H-carbazol-9-yl) methyl) phosphonic acid (DC-PA). An alkyl ammonium containing SAM is co-assembled to further optimize the surface functionalization and interaction with perovskite layer on top. A champion device with an excellent power conversion efficiency (PCE) of 23.59 % and improved device stability are achieved. This work demonstrates the advantage of using co-SAM in improving performance and stability of PSCs.

20.
Adv Mater ; 34(26): e2200864, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35470922

RESUMO

Piezoelectric biomaterials have attracted significant attention due to the potential effect of piezoelectricity on biological tissues and their versatile applications. However, the high cost and complexity of assembling and domain aligning biomolecules at a large scale, and the disordered arrangement of piezoelectric domains as well as the lack of ferroelectricity in natural biological tissues remain a roadblock toward practical applications. Here, utilizing the weak van der Waals interaction in the layered structure of small intestinal submucosa (SIS), a van der Waals exfoliation (vdWE) process is reported to fabricate ultrathin films down to the thickness of the effective piezoelectric domain. Based on that, the piezoelectric property is revealed of SIS stemming from the collagen fibril, with piezoelectric coefficients up to 4.1 pm V-1 and in-plane polarization orientation parallel to the fibril axis. Furthermore, a biosensor based on the vdWE-processed SIS film with an in-plane electrode is demonstrated that produces open-circuit voltages of ≈250 mV under the cantilever vibration condition. The vdWE method shows great potential in facilely fabricating ultrathin films of soft tissues and biosensors.


Assuntos
Materiais Biocompatíveis , Citoesqueleto , Eletrodos , Matriz Extracelular , Pâncreas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...