Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Echocardiogr ; 37(5): 550-561, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38199332

RESUMO

Congenital heart disease is a severe health risk for newborns. Early detection of abnormalities in fetal cardiac structure and function during pregnancy can help patients seek timely diagnostic and therapeutic advice, and early intervention planning can significantly improve fetal survival rates. Echocardiography is one of the most accessible and widely used diagnostic tools in the diagnosis of fetal congenital heart disease. However, traditional fetal echocardiography has limitations due to fetal, maternal, and ultrasound equipment factors and is highly dependent on the skill level of the operator. Artificial intelligence (AI) technology, with its rapid development utilizing advanced computer algorithms, has great potential to empower sonographers in time-saving and accurate diagnosis and to bridge the skill gap in different regions. In recent years, AI-assisted fetal echocardiography has been successfully applied to a wide range of ultrasound diagnoses. This review systematically reviews the applications of AI in the field of fetal echocardiography over the years in terms of image processing, biometrics, and disease diagnosis and provides an outlook for future research.


Assuntos
Inteligência Artificial , Ecocardiografia , Coração Fetal , Cardiopatias Congênitas , Ultrassonografia Pré-Natal , Humanos , Gravidez , Feminino , Ultrassonografia Pré-Natal/métodos , Ecocardiografia/métodos , Ecocardiografia/tendências , Cardiopatias Congênitas/diagnóstico por imagem , Coração Fetal/diagnóstico por imagem
2.
J Clin Med ; 12(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176738

RESUMO

Prenatal ultrasonography is the most crucial imaging modality during pregnancy. However, problems such as high fetal mobility, excessive maternal abdominal wall thickness, and inter-observer variability limit the development of traditional ultrasound in clinical applications. The combination of artificial intelligence (AI) and obstetric ultrasound may help optimize fetal ultrasound examination by shortening the examination time, reducing the physician's workload, and improving diagnostic accuracy. AI has been successfully applied to automatic fetal ultrasound standard plane detection, biometric parameter measurement, and disease diagnosis to facilitate conventional imaging approaches. In this review, we attempt to thoroughly review the applications and advantages of AI in prenatal fetal ultrasound and discuss the challenges and promises of this new field.

3.
J Clin Med ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769393

RESUMO

Myocardial fibrosis (MF) is a non-reversible process that occurs following acute or chronic myocardial damage. MF worsens myocardial deformation, remodels the heart and raises myocardial stiffness, and is a crucial pathological manifestation in patients with end-stage cardiovascular diseases and closely related to cardiac adverse events. Therefore, early quantitative analysis of MF plays an important role in risk stratification, clinical decision, and improvement in prognosis. With the advent and development of strain imaging modalities in recent years, MF may be detected early in cardiovascular diseases. This review summarizes the clinical usefulness of strain imaging techniques in the non-invasive assessment of MF.

4.
Front Cardiovasc Med ; 9: 989091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186996

RESUMO

Background: Contrast and non-contrast echocardiography are crucial for cardiovascular diagnoses and treatments. Correct view classification is a foundational step for the analysis of cardiac structure and function. View classification from all sequences of a patient is laborious and depends heavily on the sonographer's experience. In addition, the intra-view variability and the inter-view similarity increase the difficulty in identifying critical views in contrast and non-contrast echocardiography. This study aims to develop a deep residual convolutional neural network (CNN) to automatically identify multiple views of contrast and non-contrast echocardiography, including parasternal left ventricular short axis, apical two, three, and four-chamber views. Methods: The study retrospectively analyzed a cohort of 855 patients who had undergone left ventricular opacification at the Department of Ultrasound Medicine, Wuhan Union Medical College Hospital from 2013 to 2021, including 70.3% men and 29.7% women aged from 41 to 62 (median age, 53). All datasets were preprocessed to remove sensitive information and 10 frames with equivalent intervals were sampled from each of the original videos. The number of frames in the training, validation, and test datasets were, respectively, 19,370, 2,370, and 2,620 from 9 views, corresponding to 688, 84, and 83 patients. We presented the CNN model to classify echocardiographic views with an initial learning rate of 0.001, and a batch size of 4 for 30 epochs. The learning rate was decayed by a factor of 0.9 per epoch. Results: On the test dataset, the overall classification accuracy is 99.1 and 99.5% for contrast and non-contrast echocardiographic views. The average precision, recall, specificity, and F1 score are 96.9, 96.9, 100, and 96.9% for the 9 echocardiographic views. Conclusions: This study highlights the potential of CNN in the view classification of echocardiograms with and without contrast. It shows promise in improving the workflow of clinical analysis of echocardiography.

5.
J Clin Med ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629019

RESUMO

The accurate assessment of left ventricular systolic function is crucial in the diagnosis and treatment of cardiovascular diseases. Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) are the most critical indexes of cardiac systolic function. Echocardiography has become the mainstay of cardiac imaging for measuring LVEF and GLS because it is non-invasive, radiation-free, and allows for bedside operation and real-time processing. However, the human assessment of cardiac function depends on the sonographer's experience, and despite their years of training, inter-observer variability exists. In addition, GLS requires post-processing, which is time consuming and shows variability across different devices. Researchers have turned to artificial intelligence (AI) to address these challenges. The powerful learning capabilities of AI enable feature extraction, which helps to achieve accurate identification of cardiac structures and reliable estimation of the ventricular volume and myocardial motion. Hence, the automatic output of systolic function indexes can be achieved based on echocardiographic images. This review attempts to thoroughly explain the latest progress of AI in assessing left ventricular systolic function and differential diagnosis of heart diseases by echocardiography and discusses the challenges and promises of this new field.

6.
Front Cardiovasc Med ; 9: 877051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571203

RESUMO

Background: Recently, a new automated software (Heart Model) was developed to obtain three-dimensional (3D) left heart chamber volumes. The aim of this study was to verify the feasibility and accuracy of the automated 3D echocardiographic algorithm in heart transplant (HTx) patients. Conventional manual 3D transthoracic echocardiographic (TTE) tracings and cardiac magnetic resonance (CMR) images were used as a reference for comparison. Methods: This study enrolled 103 healthy HTx patients prospectively. In protocol 1, left ventricular end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), left atrial max volume (LAVmax), LA minimum volume (LAVmin) and LV ejection fraction (LVEF) were obtained using the automated 3D echocardiography (3DE) and compared with corresponding values obtained through the manual 3DE. In protocol 2, 28 patients' automated 3DE measurements were compared with CMR reference values. The impacts of contour edit and surgical technique were also tested. Results: Heart Model was feasible in 97.1% of the data sets. In protocol 1, there was strong correlation between 3DE and manual 3DE for all the parameters (r = 0.77 to 0.96, p<0.01). Compared to values obtained through manual measurements, LV volumes and LVEF were overestimated by the automated algorithm and LA volumes were underestimated. All the biases were small except for that of LAVmin. After contour adjustment, the biases reduced and all the limits of agreement were clinically acceptable. In protocol 2, the correlations for LV and LA volumes were strong between automated 3DE with contour edit and CMR (r = 0.74 to 0.93, p<0.01) but correlation for LVEF remained moderate (r = 0.65, p < 0.01). Automated 3DE overestimated LV volumes but underestimated LVEF and LA volumes compared with CMR. The limits of agreement were clinically acceptable only for LVEDV and LAVmax. Conclusion: Simultaneous quantification of left heart volumes and LVEF with the automated Heart Model program is rapid, feasible and to a great degree it is accurate in HTx recipients. Nevertheless, only LVEDV and LAVmax measured by automated 3DE with contour edit seem applicable for clinical practice when compared with CMR. Automated 3DE for HTx recipients is a worthy attempt, though further verification and optimization are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...