Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 131(2): 338-359, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230872

RESUMO

Complex locomotor patterns are generated by combination of muscle synergies. How genetic processes, early sensorimotor experiences, and the developmental dynamics of neuronal circuits contribute to the expression of muscle synergies remains elusive. We shed light on the factors that influence development of muscle synergies by studying subjects with spinal muscular atrophy (SMA, types II/IIIa), a disorder associated with degeneration and deafferentation of motoneurons and possibly motor cortical and cerebellar abnormalities, from which the afflicted would have atypical sensorimotor histories around typical walking onset. Muscle synergies of children with SMA were identified from electromyographic signals recorded during active-assisted leg motions or walking, and compared with those of age-matched controls. We found that the earlier the SMA onset age, the more different the SMA synergies were from the normative. These alterations could not just be explained by the different degrees of uneven motoneuronal losses across muscles. The SMA-specific synergies had activations in muscles from multiple limb compartments, a finding reminiscent of the neonatal synergies of typically developing infants. Overall, while the synergies shared between SMA and control subjects may reflect components of a core modular infrastructure determined early in life, the SMA-specific synergies may be developmentally immature synergies that arise from inadequate activity-dependent interneuronal sculpting due to abnormal sensorimotor experience and other factors. Other mechanisms including SMA-induced intraspinal changes and altered cortical-spinal interactions may also contribute to synergy changes. Our interpretation highlights the roles of the sensory and descending systems to the typical and abnormal development of locomotor modules.NEW & NOTEWORTHY This is likely the first report of locomotor muscle synergies of children with spinal muscular atrophy (SMA), a subject group with atypical developmental sensorimotor experience. We found that the earlier the SMA onset age, the more the subjects' synergies deviated from those of age-matched controls. This result suggests contributions of the sensory/corticospinal activities to the typical expression of locomotor modules, and how their disruptions during a critical period of development may lead to abnormal motor modules.


Assuntos
Músculo Esquelético , Atrofia Muscular Espinal , Criança , Lactente , Recém-Nascido , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Caminhada/fisiologia , Neurônios Motores/fisiologia
3.
Sci Rep ; 13(1): 7679, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169823

RESUMO

We aimed to determine a method for prescribing a standing prosthetic leg length (ProsL) that results in an equivalent running biological leg length (BioL) for athletes with unilateral (UTTA) and bilateral transtibial amputations (BTTA). We measured standing leg length of ten non-amputee (NA) athletes, ten athletes with UTTA, and five athletes with BTTA. All athletes performed treadmill running trials from 3 m/s to their maximum speed. We calculated standing and running BioL and ProsL lengths and assessed the running-to-standing leg length ratio (Lratio) at three instances during ground contact: touchdown, mid-stance, and take-off. Athletes with UTTA had 2.4 cm longer standing ProsL than BioL length (p = 0.030), but their ProsL length were up to 3.3 cm shorter at touchdown and 4.1 cm shorter at mid-stance than BioL, at speed 3-11.5 m/s. At touchdown, mid-stance, and take-off, athletes with BTTA had 0.01-0.05 lower Lratio at 3 m/s (p < 0.001) and 0.03-0.07 lower Lratio at 10 m/s (p < 0.001) in their ProsL compared to the BioL of NA athletes. During running, ProsL were consistently shorter than BioL. To achieve equivalent running leg lengths at touchdown and take-off, athletes with UTTA should set their running-specific prosthesis height so that their standing ProsL length is 2.8-4.5% longer than their BioL length, and athletes with BTTA should set their running-specific prosthesis height so that their standing ProsL lengths are at least 2.1-3.9% longer than their presumed BioL length. Setting ProsL length to match presumed biological dimensions during standing results in shorter legs during running.


Assuntos
Amputados , Membros Artificiais , Humanos , Perna (Membro) , Fenômenos Biomecânicos , Amputação Cirúrgica
4.
Sports Biomech ; 22(3): 459-472, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35232315

RESUMO

This study investigated treadmill familiarisation time in different shoe conditions by comparing lower limb consecutive kinematics waveforms using a trend symmetry method to calculate trend symmetry index, range amplitude ratio and range offset. Eighteen young adults (26.6 ± 3.3 years, 7 females) completed three 10-minute running trials at their preferred running speed (2.30 ± 0.17 m/s) on a treadmill with three shoe conditions (i.e., usual, minimalist and maximalist shoes) in a random order. Sagittal lower limb kinematic data were recorded using inertial measurement units. The results showed that sagittal-plane kinematic waveforms in the hip, knee and ankle remained consistent (trend symmetry > 0.95) without extreme excursions (range amplitude ratio ≈ 1) over 10 minutes within each testing shoe condition. Significant time × shoe interaction effect was observed in range offset (i.e., absolute differences in the average degree of kinematic waveforms between consecutive minutes) at ankle (p = 0.029, ŋp2 = 0.096) and knee (p = 0.002, ŋp2 = 0.126). Post-hoc analysis suggested that running with novel shoes required a shorter time to achieve stable lower limb kinematics (2 to 3 minutes) compared with usual shoes (7 minutes). In conclusion, young healthy adults need up to 3 and 7 minutes to familiarise to the treadmill when running at their preferred speed with their novel and usual running shoes.


Assuntos
, Corrida , Feminino , Adulto Jovem , Humanos , Sapatos , Fenômenos Biomecânicos , Extremidade Inferior , Marcha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...