Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-487623

RESUMO

Viral CD8+ epitopes are generated by the cellular turnover of viral proteins, predominantly by the proteasome. Mutations located within viral epitopes can result in escape from memory T cells but the contribution of mutations in flanking regions of epitopes in SARS-CoV-2 has not been investigated. Focusing on two of the most dominant SARS-CoV-2 nucleoprotein CD8+ epitopes, we identified mutations in epitope flanking regions and investigated the contribution of these mutations to antigen processing and T cell activation using SARS-CoV-2 nucleoprotein transduced B cell lines and in vitro proteasomal processing of peptides. We found that decreased NP9-17-B*27:05 CD8+ T cell responses to the NP-Q7K mutation correlated with lower epitope surface expression, likely due to a lack of efficient epitope production by the proteasome, suggesting immune escape caused by this mutation. In contrast, NP-P6L and NP-D103N/Y mutations flanking the NP9-17-B*27:05 and NP105-113-B*07:02 epitopes, respectively, increased CD8+ T cell responses associated with enhanced epitope production by the proteasome. Our results provide evidence that SARS-CoV-2 mutations outside the epitope could have a significant impact on antigen processing and presentation, thereby contributing to escape from immunodominant T cell responses. Alternatively, mutations could enhance antigen processing and efficacy of T cell recognition, opening new avenues for improving future vaccine designs. One Sentence SummaryNatural mutations in the flanking regions of known immunodominant SARS-CoV-2 nucleoprotein epitopes can decrease CD8+ T cell responses leading to partial escape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...