Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38592767

RESUMO

As an essential element for plants, animals, and humans, selenium (Se) has been shown to participate in microbial methane oxidation. We studied the growth response and rhizosphere methane oxidation of an economic crop (prickly pear, Rosa roxburghii Tratt) through three treatments (Se0.6 mg/kg, Se2.0 mg/kg, and Se10 mg/kg) and a control (Se0 mg/kg) in a two-month pot experiment. The results showed that the height, total biomass, root biomass, and leaf biomass of prickly pear were significantly increased in the Se0.6 and Se2.0 treatments. The root-to-shoot ratio of prickly pear reached a maximum value in the Se2 treatment. The leaf carotenoid contents significantly increased in the three treatments. Antioxidant activities significantly increased in the Se0.6 and Se2 treatments. Low Se contents (0.6, 2 mg/kg) promoted root growth, including dry weight, length, surface area, volume, and root activity. There was a significant linear relationship between root and aboveground Se contents. The Se translocation factor increased as the soil Se content increased, ranging from 0.173 to 0.288. The application of Se can improve the state of rhizosphere soil's organic C and soil nutrients (N, P, and K). Se significantly promoted the methane oxidation rate in rhizosphere soils, and the Se10 treatment showed the highest methane oxidation rate. The soil Se gradients led to differentiation in the growth, rhizosphere soil properties, and methane oxidation capacity of prickly pear. The root Se content and Se translocation factor were significantly positively correlated with the methane oxidation rate. Prickly pear can accumulate Se when grown in Se-enriched soil. The 2 mg/kg Se soil treatment enhanced growth and methane oxidation in the rhizosphere soil of prickly pear.

2.
J Sci Food Agric ; 101(14): 5907-5917, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33813747

RESUMO

BACKGROUND: Intercropping, which is growing two or more different crops in the same field simultaneously, is an effective traditional agricultural practice for productivity, resource utilization, and pest control. However, study on intercropping in paddy fields is limited. So in this study, field experiments of 2 years/four seasons (early and late seasons in 2016 and 2017) were conducted to examine the effects of rice-Pontederia cordata intercropping on rice plant growth, pest control, yield, income, and grain quality. RESULTS: We found rice-P. cordata intercropping significantly decreased the occurrence of rice diseases and pests, with a 22.0-45.9% reduction in sheath blight and a 33.8-34.4% reduction in leaf folders. The mean land equivalent ratio (LER) (1.09) result indicates that intercropping rice and P. cordata generated positive yield effects. In addition, due to the economic profit from the replacement stripe of P. cordata in the rice paddy field, intercropping rice with P. cordata could greatly enhance farmer income. The average total income of rice intercropped with P. cordata was 2.5-fold higher than that of rice monoculture. Furthermore, intercropping significantly improved grain quality compared with the rice monoculture. It significantly increased the milled rice rate and whole milled rice rate by 11.2% and 12.8%, respectively, but decreased the chalky rice rate by 30.9-39.8% and chalkiness degree by 32.2%. CONCLUSIONS: We suggest that rice-P. cordata intercropping provides an environmentally effective way to control rice diseases and pests, results in higher overall productivity and total income, and improves grain quality. © 2021 Society of Chemical Industry.


Assuntos
Produção Agrícola/economia , Grão Comestível/economia , Oryza/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Pontederiaceae/crescimento & desenvolvimento , Produção Agrícola/métodos , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Renda , Oryza/química , Doenças das Plantas/economia , Pontederiaceae/química , Estações do Ano
3.
J Environ Manage ; 280: 111746, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33298398

RESUMO

Exotic invasive plants endanger the integrity of agricultural and natural systems throughout the world. Thus, the development of cost-effective and economic application of invasive plants is warranted. Here, we characterized fifteen biochars derived from five invasive plants at different temperatures (300, 500, and 700 °C) by determining their yield, ash content, pH, CEC, surface area, elementary composition, functional groups, and mineral composition. We conducted batch adsorption experiments to investigate the adsorption capacity and efficiency for Cd2+ and Cu2+ in wastewater. Our results suggest that all invasive plants are appropriate for biochar production, temperature and plant species had interacting effects on biochar properties, and the biochars pyrolyzed at 500 and 700 °C exhibited high metal adsorption capacity in neutral (pH = 7) solutions. The adsorption kinetics can be explained adequately by a pseudo-second-order model. BBC500 (Bidens pilosa L. derived biochar at 500 °C) and MBC500 (Mikania micrantha) exhibited higher metal equilibrium adsorption capacities (38.10 and 38.02 mg g-1 for Cd2+, 20.01 and 20.10 mg g-1 for Cu2+) and buffer abilities to pH than other biochars pyrolyzed at 500 °C. The Langmuir model was a better fit for IBC500 (Ipomoea cairica), MBC500, and LBC500 (Lantana camara L.) compared to the Freundlich model, whereas the opposite was true for BBC500 and PBC500 (Praxelis clematidea). These results suggest that the adsorption of metals by IBC500, MBC500, and LBC500 was mainly monolayer adsorption, while that by BBC500 and PBC500 was mainly chemical adsorption. Our results are important for the utilization and control of invasive plants as well as the decontamination of aqueous pollution.


Assuntos
Asteraceae , Bidens , Ipomoea , Lantana , Mikania , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Carvão Vegetal , Espécies Introduzidas , Poluentes Químicos da Água/análise
4.
Plants (Basel) ; 9(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668672

RESUMO

Worldwide, rice blast (Pyricularia oryzae) causes more rice crop loss than other diseases. Acid rain has reduced crop yields globally for nearly a century. However, the effects of acid rain on rice-Pyricularia oryzae systems are still far from fully understood. In this study, we conducted a lab cultivation experiment of P. oryzae under a series of acidity conditions as well as a glasshouse cultivation experiment of rice that was inoculated with P. oryzae either before (P. + SAR) or after (SAR + P.) simulated acid rain (SAR) at pH 5.0, 4.0, 3.0 and 2.0. Our results showed that the growth and pathogenicity of P. oryzae was significantly inhibited with decreasing pH treatments in vitro culture. The SAR + P. treatment with a pH of 4.0 was associated with the highest inhibition of P. oryzae expansion. However, regardless of the inoculation time, higher-acidity rain treatments showed a decreased inhibition of P. oryzae via disease-resistance related enzymes and metabolites in rice leaves, thus increasing disease index. The combined effects of high acidity and fungal inoculation were more serious than that of either alone. This study provides novel insights into the effects of acid rain on the plant-pathogen interaction and may also serve as a guide for evaluating disease control and crop health in the context of acid rain.

5.
Environ Sci Pollut Res Int ; 27(13): 14903-14914, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32060834

RESUMO

The invasive and widespread golden apple snail (GAS, Pomacea canaliculata) is a harmful crop pest in many parts of Asia. The heavy use of molluscicides to control GAS could result in soil and water pollution as well as in loss of biodiversity. A sustainable and pollution-free control method is urgently needed to counteract this invasion. In this study, we proposed using dried and powdered GAS residue to neutralize and fertilize soils. We compared the effects of adding GAS residue (i.e., ground GAS shell and meat residue) to the effects of adding lime upon soil properties and microbes in a greenhouse pot experiment. Each pot was incubated for 120 days, and soil pH, nutrients, microbial species, and enzyme activity were assessed. Results showed that addition of GAS residue significantly improved soil pH, contents of total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), and available nitrogen but decreased soil available phosphorus (AP) content due to phosphorus sorption induced by soil organic matter (OM) and high pH. The GAS residue added to soil released nutrients and alleviated soil acidity, as well as provided more resources to soil microbes to increase their bioactivity, although lime addition was better at mitigating soil acidity. We found that with added GAS residue of 25 g kg-1, the soil nitrate nitrogen (NO3-N) content increased by 10 times; microbial biomass increased by 43%; and enzyme activity of ß-1,4-glucosidase, ß-1,4-N-acetylglucosaminidase, and ß-D-cellobiosidase also were enhanced, compared to the control. Our findings suggest that GAS residue functions well as a fertilizer and soil amendment to aid the remediation of barren and acidic soils, making it a valuable and useful option in the control of the invasive GAS.


Assuntos
Fertilizantes , Solo , Animais , Ásia , Carbono , Nitrogênio/análise , Fósforo/análise , Caramujos
6.
J Sci Food Agric ; 99(7): 3326-3334, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30569454

RESUMO

BACKGROUND: A mixed-cropping system that enhances farmland biodiversity has the potential to improve grain yield and quality; however, the impacts of growing different rice cultivars simultaneously has been rarely investigated. In the present study, five popular rice cultivars were selected and ten mixture combinations were made according to the growth period, plant height, grain yield and quality, and pest and disease resistance. Seedlings of the five cultivars and ten mixture combinations (mixed-sowing of the seeds in an equal ratio, then mixed-transplanting and finally mixed-harvesting) were grown in plastic pots in a glasshouse during the early and late growing seasons in 2016. RESULTS: Compared with the mono-cropping systems in the early and late growing seasons in 2016 (paired t-test), the mixed-cropping systems increased the rice leaf photosynthetic rate, soil plant analysis development (SPAD) index and total aboveground dry weight. Moreover, mixed-cropping systems improved the number of spikelets per panicle, seed-setting rate, and grain weight per pot and harvest index by 19.52% and 5.77%, 8.53% and 4.41%, 8.31% and 4.61%, and 10.26% and 6.98% in the early and late growing seasons, respectively. In addition, mixed-cropping systems reduced chalky rice rate and chalkiness degree by 33.12% and 43.42% and by 30.11% and 48.13% in the early and late growing seasons, respectively. CONCLUSION: The SPAD indexes and photosynthetic rates enhanced at physiology maturity in mixed-cropping systems may result in higher grain yield and better grain quality. In general, it was found that mixed-cropping with different rice cultivars has the potential for increasing grain yield and improving grain quality. © 2018 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Oryza/crescimento & desenvolvimento , Biomassa , Oryza/química , Oryza/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Controle de Qualidade , Estações do Ano , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
7.
PeerJ ; 6: e5536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186697

RESUMO

The intensification of young hillside Dimocarpus longan orchard cultivation has led to increase soil erosion and decrease soil fertility in South China. Leguminous crops are often used for improving soil properties. An approximately 2-year-long field experiment in lateritic soil in South China was conducted to evaluate the effects of legume introductions on soil properties and carbon (C) and nitrogen (N) pools. Two leguminous and one non-leguminous plant species, including Arachis hypogaea L. (a leguminous oilseed crop species, DA), Stylosanthes guianensis (a perennial herbaceous leguminous species, DS) and Lolium perenne L. (an annual non-leguminous forage species, DL), were introduced into a D. longan orchard as three treatments and compared to the monoculture of D. longan (the control, D0). And the harvested biomass residues of the three cover plants were returned to their corresponding plots as green manure. Soil samples were collected from depths of 0-10 and 10-20 cm approximately 2 years after treatment application. The results showed that, compared with D0, DA significantly improved the contents of soil available phosphorus, dissolved organic carbon (DOC), total nitrogen, ammonium and the N pool. In addition, DS significantly increased the contents of DOC, microbial biomass carbon and ammonium in the soil. However, DL did not affect any soil properties or the C and N pools. In addition, neither DA nor DS altered the soil bulk density or the contents of available nitrogen, total organic carbon and the C pool. The improvement of soil properties by DS and DA was positively correlated with the plant residues amount, plant N content but negatively correlated with the plant C:N ratios. Besides, the plant growth of longan was significantly improved by DA. In conclusion, compared with that of S. guianensis, the introduction of A. hypogaea L. was more helpful for restoring and improving soil properties, N pool and longan growth within the young hillside orchard in South China.

8.
Mitochondrial DNA B Resour ; 3(2): 1064-1066, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33474416

RESUMO

We present the complete mitochondrial genome of Pomacea maculate in this study. The mitochondrial genome is 15,512 bp in length, containing 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes. Overall nucleotide compositions of the light strand are 41.13% of A, 30.81% of T, 15.25% of C and 12.81% of G. Its gene arrangement and distribution are different from the typical vertebrates. The absence of D-loop is consistent with the Gastropoda, but at least one lengthy non-coding region is essential regulatory element for the initiation of transcription and replication. Phylogenetic tree is constructed by the maximum-likelihood method based on the complete mitochondrial genomes of 15 species of Caenogastropoda, using Helix aspersa as outgroup to assess their actual phylogenetic relationship and evolution. The result provides fundamental data for resolving phylogenetic and genetic problems related to effective management strategies.

9.
PeerJ ; 4: e2752, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994969

RESUMO

The aim of this study was to compare the effects of four fertilizer applications-control (C), chemical fertilizer (F), compost (O), and in situ earthworm breeding (E)-on the growth, quality and yield of papaya (Carica papaya L.). In this study, 5 g plant-1 urea (CH4N2O, %N = 46.3%) and 100 g plant-1 microelement fertilizer was applied to each treatment. The fertilizer applications of these four treatments are different from each other. The results showed that the E treatment had the highest growth parameters over the whole growth period. At 127 days after transplantation, the order of plant heights from greatest to smallest was E > F > O > C, and the stem diameters were E > F > O > C, with significant differences between all treatments. Soluble-solid, sugar, vitamin C, and protein content significantly increased in the E treatment. In addition, the total acid and the electrical conductivity of the fruit significantly decreased in the E treatment. Fruit firmness clearly increased in the O treatment, and decreased in the F treatment. The fresh individual fruit weights, fruit numbers, and total yields were greatly improved in the F and E treatments, and the total yield of the E treatment was higher than that in the F treatment. In conclusion, the in situ earthworm breeding treatment performed better than conventional compost and chemical fertilizer treatments. Furthermore, in situ earthworm breeding may be a potential organic fertilizer application in orchards because it not only improves the fruit quality and yield but also reduces the amount of organic wastes from agriculture as a result of the activities of earthworms.

10.
ACS Nano ; 10(1): 1249-55, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26593677

RESUMO

Transition-metal chalcogenides (TMCs) can be used either as intercalation cathodes or as conversion-type anodes for lithium ion batteries, for which two distinctively different lithiation reaction mechanisms govern the electrochemical performance of TMCs. However, the factors that control the transition of lithiation mechanisms remain elusive. In this work, we investigated the lithiation process of NbSe3 ribbons using in situ transmission electron microscopy and observed a size-dependent transition from intercalation to the conversion reaction. Large NbSe3 ribbons can accommodate high concentrations of Li(+) through intercalation by relaxing their internal spacing, while lithiation of small NbSe3 ribbons proceeds readily to full conversion. We found that the size-dependent variation of the lithiation mechanism is associated with both Li(+) diffusion in NbSe3 and the accommodation of newly formed phases. For large NbSe3 ribbons, the intercalation-to-conversion transition is impeded by both long-range Li(+) diffusion and large-scale accommodation of volume expansion induced by the formation of new phases. These results demonstrate the inherent structural instability of NbSe3 as an intercalation cathode and its high lithiation rate as a promising conversion-type anode.

11.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 1892-4, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25319293

RESUMO

We present the complete mitochondrial genome of Cipangopaludina cathayensis in this study. The mitochondrial genome is 17,157 bp in length, containing 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes. All of them are encoded on the heavy strand except 7 tRNA genes on the light strand. Overall nucleotide compositions of the light strand are 44.51% of A, 26.74% of T, 20.48% of C and 8.28% of G. All the protein-coding genes start with ATG initiation codon except ATP6 with ATA and ND4 with TTG, and 2 types of termination codons are TAA (ATP6, ND2, COX1, COX2, ATP8, ND1, ND6, Cytb, COX3, ND4) and TAG (ND4L, ND5, ND3). There are 29 intergenic spacers and 5 gene overlaps. The tandem repeat sequences are observed in COX2, tRNA(Asp), ATP6, tRNA(Cys), S-rRNA, ND1, Cytb, ND4 and COX3 genes. Gene arrangement and distribution are different from the typical vertebrates. The absence of D-loop is consistent with the Gastropoda, but at least one lengthy non-coding region is essential regulatory element for the initiation of transcription and replication.


Assuntos
Gastrópodes/genética , Genoma Mitocondrial , Animais , Composição de Bases/genética , Pareamento de Bases/genética , Mapeamento Cromossômico , Genes Mitocondriais , RNA Ribossômico/genética , RNA de Transferência/genética
12.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 1622-4, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25231719

RESUMO

We present the complete mitochondrial genome of the Achatina fulica in this study. The results show that the mitochondrial genome is 15,057 bp in length, which is comprised of 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes. The nucleotide compositions of the light strand are 35.47% of A, 27.97% of T 19.46% of C, and 17.10% of G. Except the ND3, 7 tRNA, ATP6, ATP8, COX3 and 12S-rRNA on the light strand, the rest are encoded on the heavy strand. Five types of inferred initiation codons are ATA (ND1, ND5), GTG (ND6), ATG (COX3, COX2), ATT (ND4) and TTG (COX1, ND2, ND3, ND4L, ATP6, ATP8, Cytb), and 3 types of inferred termination codons are T (COX3, ND2), TAA (ND1, ND4L, ND5, ND6, ATP6), and TAG (ND3, ND4, COX1, COX2, Cytb, ATP8). There are 24 intergenic spacers and 6 gene overlaps. The tandem repeat sequence (total 52 bp) of (AATAATT)n is observed in 16S-rRNA. Gene arrangement and distribution are inconsistent with the typical vertebrates.


Assuntos
Genoma Mitocondrial/genética , Caramujos/genética , Animais , Composição de Bases/genética , DNA Mitocondrial/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Caramujos/classificação
13.
Mitochondrial DNA B Resour ; 1(1): 45-47, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33473402

RESUMO

We present the complete mitochondrial genome of Cipangopaludina cathayensis in this study. The mitochondrial genome is 15 706 bp in length, containing 13 protein-coding genes, two rRNA genes and 22 tRNA genes. Overall nucleotide compositions of the light strand are 40.97% of A, 30.78% of T, 20.48% of C and 12.60% of G. Its gene arrangement and distribution are different from the typical vertebrates. The absence of D-loop is consistent with the Gastropoda, but, at least, one lengthy non-coding region is an essential regulatory element for the initiation of transcription and replication. A phylogenetic tree is constructed using the maximum-likelihood method based on the complete mitogenomes of the closely related 21 Gastropoda species to assess their actual phylogenetic relationship and evolution. The result provides fundamental data for resolving phylogenetic and genetic problems related to effective management strategies.

14.
Environ Sci Pollut Res Int ; 22(22): 18260-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26201661

RESUMO

A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids.


Assuntos
Chuva Ácida/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Biomassa , China
15.
Ying Yong Sheng Tai Xue Bao ; 25(6): 1791-8, 2014 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-25223040

RESUMO

In order to understand whether Pomacea canaliculata exhibits gender differences in cold resistance, the survival rate and supercooling point of both P. canaliculata females and males were investigated at low temperature. The changes in physiological and biochemical indices in the body of P. canaliculata before and after the winter were also examined. The results showed that the mean supercooling point of females was -6.83 degrees C, which was significantly lower than that of the males (-6.26 degrees C). With the arrival of winter, the amounts of bound water, glycerol, lipid and glycogen of P. canaliculata increased, while the amount of free water decreased. These indices except glycerol showed significant differences between males and females. More than 90% non-acclimated snails could survive at the temperature of 10 degrees C for 7 days. The survival rate of snails exhibited significant differences in sex and shell height after being transferred at 5 degrees C for 7 days. In addition, more females were recorded during field investigation. Based on these results, we concluded that the females had higher cold tolerance than the males. This finding would provide some references for further investigation of ecological adaptation, natural sex ratio and cold tolerance mechanisms of P. canaliculata.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Fatores Sexuais , Caramujos/fisiologia , Animais , Feminino , Glicogênio , Masculino , Estações do Ano , Razão de Masculinidade , Água
16.
Int J Phytoremediation ; 13(5): 456-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21598776

RESUMO

Mangroves play an important role for removing nutrients, heavy metals, and other pollutants in wetland ecosystems. This study investigated the physiological responses of a mangrove plant (i.e., Sonneratia apetala Buch-Ham) to different wastewater pollution levels. Four different treatments, namely three concentration levels (i.e., normal, five-time-greater than normal, and ten-time-greater than normal) of wastewaters and one control (i.e., salted water), were used to grow the mangrove plants. Results showed that the height and biomass of the plant increased with wastewater pollution levels. No significant differences in root and catalase activities were observed among different treatments, whereas the increases in peroxidase and superoxide dismutase activities were attributed to the need for detoxification. In general, leaf chlorophyll content increased with wastewater pollution levels due to the increase in nutrient contents.


Assuntos
Lythraceae/efeitos dos fármacos , Lythraceae/fisiologia , Metais Pesados/farmacologia , Poluentes da Água/farmacologia , Biomassa , Catalase/metabolismo , Clorofila/metabolismo , Poluição Ambiental , Lythraceae/crescimento & desenvolvimento , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Superóxido Dismutase/metabolismo , Eliminação de Resíduos Líquidos , Água/química , Áreas Alagadas
17.
Ying Yong Sheng Tai Xue Bao ; 20(7): 1630-4, 2009 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-19899463

RESUMO

This paper analyzed the present status of ecology specialty construction and personnel training in China. It was considered that there existed some problems to be solved, e. g., the contradiction between the rapid development of new subjects in ecology and the relative weakness in personnel qualified to teach, the unbalance between the extensive and intensive, and the deep and shallow teaching programs for the students in ecology, the conflict between the "soft" (theoretical) ecological education and the "hard" (technical) ecological construction, and the contradiction between the limited demands and the relative surplus supply of undergraduate students in ecology. Based on these analyses, a series of suggestions and countermeasures for the innovation of the teaching styles and training directions in ecological specialties were put forward, including 1) to formulate a development and construction plan of ecology specialty and to appropriately regulate the enrollment of undergraduate students, 2) to achieve the changes in current teaching styles from classroom to field and from "soft" theoretical teaching to "hard" technical training, 3) to develop and implement a variety of diversified teaching methods, such as participative, interactive, research-based, and innovative teaching for undergraduate students, 4) to enhance the undergraduate educational quality and teaching resource bank construction and to achieve teaching resource sharing, and 5) to establish "T-type" personnel training system in ecology. Some employment-oriented personnel training directions in ecology specialty were also presented.


Assuntos
Currículo/normas , Ecologia/educação , Ensino/métodos , Universidades , China
18.
J Hazard Mater ; 164(2-3): 1310-5, 2009 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18977087

RESUMO

A strain of sulfate-reducing bacteria, designated strain 'DBM', was isolated from sediments of a mining area. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Citrobacter, with C. AzoR-4, C. freundii, C. braakii and C. werkmanii being the most closely related species (sequence similarity up to 98%). Few studies have been done on sulfate reduction ability in Citrobacter. Electron microscopy studies showed that the morphology of the strain DBM was rod-shaped. Strain DBM reduced 10mM of sulfate completely to sulfide within 7d, and it recovered its sulfate reduction ability after 7d of aerobic growth. Furthermore, strain DBM effectively precipitated 0.40 mM copper during its growth. Elemental composition of the resulting microbial precipitate was studied using electro-dispersive X-ray spectroscopy, and it was found that the ratio of S:Cu was 1.07. The result was consistent with the formation of copper sulfide. Heavy metal precipitation by Citrobacter sp. strain DBM was a phenomenon that may be useful in the bioremediation of acid mine drainage.


Assuntos
Citrobacter/isolamento & purificação , Cobre/isolamento & purificação , Mineração , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/isolamento & purificação , Precipitação Química , Sedimentos Geológicos/microbiologia , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...