Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nat Commun ; 15(1): 4737, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834556

RESUMO

Hexachlorobutadiene (HCBD) is a concerning chemical that is included in the United States Toxic Substances Control Act, and the Stockholm Convention. Knowledge of the sources of HCBD is insufficient and is pivotal for accurate inventory and implementing global action. In this study, unintentional HCBD release and source emission factors of 121 full-scale industrial plants from 12 industries are investigated. Secondary copper smelting, electric arc furnace steelmaking, and hazardous waste incineration show potential for large emission reductions, which are found of high HCBD emission concentrations of > 20 ng/g in fine particulate matter in this study. The highest HCBD emission concentration is observed for the secondary copper smelting industry (average: 1380 ng/g). Source emission factors of HCBD for the 12 industries range from 0.008 kg/t for coal fire power plants to 0.680 kg/t for secondary lead smelting, from which an estimation of approximately 8452.8 g HCBD emissions annually worldwide achieved. The carcinogenic risks caused by HCBD emissions from countries and regions with intensive 12 industrial sources are 1.0-80 times higher than that without these industries. These results will be useful for formulating effective strategies of HCBD control.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38769651

RESUMO

AIMS: Hepatitis E caused by the hepatitis E virus (HEV) is prevalent worldwide. In China, considerable shifts in the epidemiology of hepatitis E have been observed over the last two decades, with ongoing changes in the prevalence of HEV. METHODS: This study, in conjunction with the health examinations for students and workers, aims to estimate the seroprevalence and assess the risk factors of HEV infection in general population in Hebei province, China. Epidemiological information was collected using a specific questionnaire and blood samples were collected from each participant during the process of health examination. Anti-HEV IgG and IgM in sera were tested using the Wantai ELISA assay kits. Logistic regression modelling was used to identify associated risk factors. RESULTS: The average positive rate of anti-HEV IgG in students (6-25 years) was 3.4%. One (0.2%) student was anti-HEV IgM positive, while also testing positive for IgG. The HEV seroprevalence was not related to students' gender, school, or family residence. In occupational populations, the overall seropositivity rate was 13.3% for anti-HEV IgG and 0.67% for IgM. HEV seropositivity increased significantly with age, ranging from 3.8% to 18.6% in age groups, and differed significantly among four occupation groups: farmers (17.6%), food supply workers (18.0%), other non-farm workers (14.7%) and healthcare workers (5.9%) (p = 0.002). Multivariable logistic analysis confirmed the significant correlations of seroprevalence with age and occupation. CONCLUSIONS: The study found a low seroprevalence of HEV in children and young adults in Hebei Province, China. Advanced age correlates with higher seroprevalence in occupational populations, indicating an accumulation of HEV infection over time. Seroprevalence varied significantly among different occupation groups, suggesting the important role of occupational exposure for HEV infection.

3.
Sci Rep ; 14(1): 11706, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778123

RESUMO

Co-administering a low dose of colistin (CST) with ciprofloxacin (CIP) may improve the antibacterial effect against resistant Escherichia coli, offering an acceptable benefit-risk balance. This study aimed to quantify the interaction between ciprofloxacin and colistin in an in silico pharmacokinetic-pharmacodynamic model from in vitro static time-kill experiments (using strains with minimum inhibitory concentrations, MICCIP 0.023-1 mg/L and MICCST 0.5-0.75 mg/L). It was also sought to demonstrate an approach of simulating concentrations at the site of infection with population pharmacokinetic and whole-body physiologically based pharmacokinetic models to explore the clinical value of the combination when facing more resistant strains (using extrapolated strains with lower susceptibility). The combined effect in the final model was described as the sum of individual drug effects with a change in drug potency: for ciprofloxacin, concentration at half maximum killing rate (EC50) in combination was 160% of the EC50 in monodrug experiments, while for colistin, the change in EC50 was strain-dependent from 54.1% to 119%. The benefit of co-administrating a lower-than-commonly-administrated colistin dose with ciprofloxacin in terms of drug effect in comparison to either monotherapy was predicted in simulated bloodstream infections and pyelonephritis. The study illustrates the value of pharmacokinetic-pharmacodynamic modelling and simulation in streamlining rational development of antibiotic combinations.


Assuntos
Antibacterianos , Ciprofloxacina , Colistina , Simulação por Computador , Escherichia coli , Testes de Sensibilidade Microbiana , Ciprofloxacina/farmacocinética , Ciprofloxacina/farmacologia , Colistina/farmacocinética , Colistina/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Humanos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Quimioterapia Combinada , Modelos Biológicos
4.
iScience ; 27(6): 109941, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38812543

RESUMO

The intact proviral DNA assay (IPDA) based on droplet digital PCR was developed to identify intact proviral DNA and quantify HIV-1 latency reservoirs in patients infected with HIV-1. However, the genetic characteristics of different HIV-1 subtypes are non-consistent due to their high mutation and recombination rates. Here, we identified that the IPDA based on the sequences features of an HIV-1 subtype could not effectively detect different HIV-1 subtypes due to the high diversity of HIV-1. Furthermore, we demonstrated that mutations in env gene outside the probe binding site affect the detection efficiency of IPDA. Since mutations in env gene outside the probe binding site may also lead to the formation of stop codons, thereby preventing the formation of viruses and ultimately overestimating the number of HIV-1 latency reservoirs, it is important to address the effect of mutations on the IPDA.

5.
MedComm (2020) ; 5(4): e517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525106

RESUMO

Regarding the extensive global attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that constitutes an international public health emergency, pseudovirus neutralization assays have been widely applied due to their advantages of being able to be conducted in biosafety level 2 laboratories and having a high safety factor. In this study, by adding a blue fluorescent protein (AmCyan) gene to the HIV system pSG3-△env backbone plasmid HpaI and truncating the C-terminal 21 amino acids of the SARS-CoV-2 spike protein (S), high-titer SARS-CoV-2-Sdel21-AmCyan fluorescent pseudovirus was successfully packaged. The fluorescent pseudovirus was used to establish a neutralization assay in a 96-well plate using 293T cells stably transfected with the AF cells. Then, parameters such as the ratio of backbone and membrane plasmid, sensitive cells, inoculation of cells and virus, as well as incubation and detection time were optimized. The pseudovirus neutralization assay demonstrated high accuracy, sensitivity, repeatability, and a strong correlation with the luminescent pseudovirus neutralization assay. Additionally, we scaled up the neutralizing antibody determination method by increasing the plate size from 96 wells to 384 wells. We have established a robust fluorescent pseudotyped virus neutralization assay for SARS-CoV-2 using the HIV system, providing a foundation for serum neutralization antibody detection, monoclonal antibody screening, and vaccine development.

6.
Vaccines (Basel) ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543956

RESUMO

This study explored the optimum immunization schedule for the quadrivalent influenza split-virion vaccine containing influenza A strains (H1N1 and H3N2) and B lineage strains (Yamagata and Victoria) in children aged 3-8 years. The 652 participants enrolled were divided into two groups based on a history of influenza immunization (IH group) or no history of influenza immunization (NH group). The groups were administered a two-dose immunization schedule on days 0 and 30. In the NH group, on day 30 after the first dose, the positive rates of influenza hemagglutination-inhibition antibodies of strains H1N1, H3N2, BV, and BY were 85.85%, 71.70%, 65.27% and 60.45%, respectively. The positive rates of BV and BY failed to meet the absolute criteria for evaluating the immunogenicity of influenza vaccine in the population aged 3-60 years (for each strain antibody). On day 30 after the second dose, HI antibodies to strains H1N1, H3N2, BV, and BY met the immunogenicity acceptable criteria. In the IH group, on day 30 after the first dose, HI antibodies to strains H1N1, H3N2, BV, and BY met the acceptable criteria for immunogenicity. The incidence rates of adverse reactions (vaccine-related adverse events) from the first dose up until 30 days after the second dose were 20.80% in the IH group and 19.50% in the NH group. Only two Grade 3 adverse reactions (fever: temperature ≥ 39.5 °C, swelling: area ≥ 50% of the injection site area) occurred in the IH group, and no Grade 3 adverse reactions occurred in the NH group. No serious adverse reactions occurred in either group. We conclude that for the NH group, two doses of quadrivalent influenza vaccine should be administered, and for the IH group, a one-dose regimen is acceptable.

7.
J Med Virol ; 96(1): e29314, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163276

RESUMO

SARS-CoV-2 breakthrough infections in vaccinated individuals underscore the threat posed by continuous mutating variants, such as Omicron, to vaccine-induced immunity. This necessitates the search for broad-spectrum immunogens capable of countering infections from such variants. This study evaluates the immunogenicity relationship among SARS-CoV-2 variants, from D614G to XBB, through Guinea pig vaccination, covering D614G, Alpha, Beta, Gamma, Delta, BA.1, BA.2, BA.2.75, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB, employing three immunization strategies: three-dose monovalent immunogens, three-dose bivalent immunogens, and a two-dose vaccination with D614G followed by a booster immunization with a variant strain immunogen. Three distinct immunogenicity clusters were identified: D614G, Alpha, Beta, Gamma, and Delta as cluster 1, BA.1, BA.2, and BA.2.75 as cluster 2, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB as cluster 3. Broad-spectrum protection could be achieved through a combined immunization strategy using bivalent immunogens or D614G and XBB, or two initial D614G vaccinations followed by two XBB boosters. A comparison of neutralizing antibody levels induced by XBB boosting and equivalent dosing of D614G and XBB revealed that the XBB booster produced higher antibody levels. The study suggests that vaccine antigen selection should focus on the antigenic alterations among variants, eliminating the need for updating vaccine components for each variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Cobaias , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Análise por Conglomerados , Vacinas Combinadas , Anticorpos Antivirais
8.
J Antimicrob Chemother ; 79(2): 391-402, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158772

RESUMO

OBJECTIVES: Combination therapy is often used for carbapenem-resistant Gram-negative bacteria. We previously demonstrated synergy of polymyxin B and minocycline against carbapenem-resistant Klebsiella pneumoniae in static time-kill experiments and developed an in silico pharmacokinetic/pharmacodynamic (PK/PD) model. The present study assessed the synergistic potential of this antibiotic combination in dynamic experiments. METHODS: Two clinical K. pneumoniae isolates producing KPC-3 and OXA-48 (polymyxin B MICs 0.5 and 8 mg/L, and minocycline MICs 1 and 8 mg/L, respectively) were included. Activities of the single drugs and the combination were assessed in 72 h dynamic time-kill experiments mimicking patient pharmacokinetics. Population analysis was performed every 12 h using plates containing antibiotics at 4× and 8× MIC. WGS was applied to reveal resistance genes and mutations. RESULTS: The combination showed synergistic and bactericidal effects against the KPC-3-producing strain from 12 h onwards. Subpopulations with decreased susceptibility to polymyxin B were frequently detected after single-drug exposures but not with the combination. Against the OXA-48-producing strain, synergy was observed between 4 and 8 h and was followed by regrowth. Subpopulations with decreased susceptibility to polymyxin B and minocycline were detected throughout experiments. For both strains, the observed antibacterial activities showed overall agreement with the in silico predictions. CONCLUSIONS: Polymyxin B and minocycline in combination showed synergistic effects, mainly against the KPC-3-producing K. pneumoniae. The agreement between the experimental results and in silico predictions supports the use of PK/PD models based on static time-kill data to predict the activity of antibiotic combinations at dynamic drug concentrations.


Assuntos
Minociclina , Polimixina B , Humanos , Polimixina B/farmacocinética , Minociclina/farmacologia , Klebsiella pneumoniae , beta-Lactamases/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
9.
Vaccines (Basel) ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896989

RESUMO

Two doses of the inactivated influenza vaccine (IIV) are generally recommended for children under 9 years old. This study assessed the necessity for a second dose of quadrivalent IIV (IIV4) in children aged 3-8 years. In this randomized, open-label, paralleled-controlled study, 400 children aged 3-8 years who were vaccine-unprimed were randomly assigned at a 1:1 ratio to receive a two-dose (Group 1) or one-dose (Group 2) regimen of IIV4, and 200 who were vaccine-primed received one dose of IIV4 (Group 3). A serum sample was collected before and 28 days after the last dose to determine the hemagglutination inhibition (HI) antibody level. Adverse events were collected within 28 days after each dose. One-dose or two-doses of IIV4 were well tolerated and safe in children aged 3-8 years, and no serious adverse events related to the vaccine were reported. The seroconversion rates (SCRs) of HI antibody ranged from 61.86% to 95.86%, and the post-vaccination seroprotection rates (SPRs) were all >70% in three groups against the four virus strains. The two-dose regimen in vaccine-unprimed participants (Group 1) achieved similar SPRs in comparison with the one-dose in the vaccine-primed group (Group 3), and the SPRs in Group 1 and Group 3 were higher in vaccine-unprimed participants of the one-dose regimen (Group 2). The present study supports the recommendations of a two-dose regimen for IIV4 use in children aged 3-8 years.

10.
Vector Borne Zoonotic Dis ; 23(11): 588-594, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699252

RESUMO

Background: Hepatitis E virus (HEV) is a zoonotic pathogen. HEV has been found to be widely prevalent in rabbits. Its isolates are classified into HEV-3, rabbit subgenotype (HEV-3ra). The routes of human infection with HEV-3ra remain unclear; however, foodborne transmission is possible when asymptomatically infected animals enter the food chain. The prevalence of HEV infection in slaughtered rabbits and the presence of HEV in rabbit meat were evaluated in this study. Materials and Methods: In three slaughterhouses in Hebei province, China, samples of rabbit blood were collected during the slaughter process, and muscle, liver, and cavity juice were collected from the rabbit carcasses. Anti-HEV antibody in serum samples was detected using enzyme-linked immunosorbent assay. HEV RNA was tested in all samples by reverse transcription nested PCR (RT-nested PCR). The final amplicons of RT-nested PCR were sequenced and phylogenetically analyzed. Results: Of the 459 serum samples, 50 [10.9%, 95% confidence interval (CI): 8.1-13.7] were positive for anti-HEV antibody, and 17 (3.7%, 95% CI: 2.0-5.4) were positive for HEV RNA. HEV RNA was detected in 7 of 60 liver samples (11.7%, 95% CI: 3.3-20) and 2 cavity juice samples from semi-eviscerated carcasses, but was not detected in any muscle sample from either the eviscerated or semi-eviscerated carcasses. All the detected HEV strains belonged to HEV-3ra and related most closely with the rabbit HEV sequence previously reported in China. Conclusion: A portion of rabbits were in the viremia period of HEV infection at the slaughter age, resulting in the possibility of HEV carriage by rabbit carcass, particularly semi-eviscerated carcass containing liver. These findings suggest a potential risk of HEV transmission from raw rabbit products entering the food chain, whereas the presence of HEV appeared to be lower in the eviscerated carcass than in the semi-eviscerated carcass.


Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , Animais , Coelhos , Vírus da Hepatite E/genética , Matadouros , RNA Viral/genética , Hepatite E/epidemiologia , Hepatite E/veterinária , Anticorpos Anti-Hepatite/genética , Carne , China/epidemiologia , Filogenia
11.
Emerg Microbes Infect ; 12(2): e2261566, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37727107

RESUMO

ABSTRACTThe global outbreak of COVID-19 has caused a severe threat to human health; therefore, simple, high-throughput neutralization assays are desirable for developing vaccines and drugs against COVID-19. In this study, a high-titre SARS-CoV-2 pseudovirus was successfully packaged by truncating the C-terminus of the SARS-CoV-2 spike protein by 21 amino acids and infecting 293 T cells that had been stably transfected with the angiotensin-converting enzyme 2 (ACE2) receptor and furin (named AF cells), to establish a simple, high-throughput, and automated 384-well plate neutralization assay. The method was optimized for cell amount, virus inoculation, incubation time, and detection time. The automated assay showed good sensitivity, accuracy, reproducibility, Z' factor, and a good correlation with the live virus neutralization assay. The high-throughput approach would make it available for the SARS-CoV-2 neutralization test in large-scale clinical trials and seroepidemiological surveys which would aid the accelerated vaccine development and evaluation.


Assuntos
COVID-19 , Estomatite Vesicular , Animais , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Reprodutibilidade dos Testes , Pseudotipagem Viral , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Vírus da Estomatite Vesicular Indiana/genética , Testes de Neutralização/métodos
12.
Hum Vaccin Immunother ; 19(2): 2245721, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37587615

RESUMO

This study aimed to evaluate the immunogenicity non-inferiority and safety of the quadrivalent inactivated split-virion influenza vaccine in participants ≥ 3 years old. A total of 3,328 participants were enrolled. Participants 3-8 years old were administered one or two doses of the investigational vaccine or one dose of the control vaccine, whereas the other participants were administered only one dose of the investigational or control vaccine. The immunogenicity and occurrence of adverse events (AEs) after 30 days of full-course vaccination and serious adverse events (SAEs) within 6 months after full-course vaccination were assessed. The sero-conversion rates (SCRs) of anti-H1N1, H3N2, B(Y), and B(V) antibodies in the test group were 74.64%, 87.40%, 82.66%, and 78.89%, respectively, and their geometric mean titers were 1:250.13, 1:394.54, 1:200.84, and 1:94.91, respectively, which were non-inferior to those in the control group. The SCRs and sero-protection rates in the two-dose group of participants 3-8 years old were greater than those in the one-dose group. The incidences of total AEs and adverse reactions in the test group were 31.6% and 21.7%, respectively, which were close to those in the control group. In the two-dose group, the incidence of adverse reactions was considerably lower in the second dose (5.5%) than in the first dose (14.7%). Most AEs were grade 1 in severity, and no SAEs were recorded. The investigational vaccine had immunogenicity non-inferior to the control vaccine, and two doses were more effective than one dose in participants 3-8 years old, with a good overall safety.Trial registration: CTR20200715.


People in China are frequently infected by influenza viruses in specific seasons, causing a large burden of disease. Influenza viruses have distinct phenotypes depending on the season. Therefore, vaccines that can effectively prevent the infection of various influenza virus phenotypes need to be developed. The quadrivalent inactivated split-virion influenza vaccine is effective against four influenza virus phenotypes. In this trial, the immunogenicity and safety of the quadrivalent inactivated split-virion influenza vaccine (investigational vaccine) developed by Dalian Aleph Biomedical Co., Ltd. were evaluated. A total of 3,328 participants ≥ 3 years old were included. Participants 3­8 years old were further divided based on the presence or absence of a history of influenza vaccination. Those participants without a vaccination history were administered one or two doses of the investigational vaccine or one dose of a marketed quadrivalent influenza vaccine (control vaccine), and those participants with a vaccination history were administered one dose of the investigational or control vaccine. This study showed for the first time that the immunogenicity and safety of the investigational vaccine were not inferior to those of the control vaccine and that the two-dose procedure induced a good immune effect in the 3­8-year-old group. In conclusion, administration of the investigational vaccine can prevent seasonal influenza in populations aged ≥ 3 years.


Assuntos
Imunogenicidade da Vacina , Vacinas contra Influenza , Criança , Pré-Escolar , Humanos , Método Duplo-Cego , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Vacinas Combinadas
13.
Nat Commun ; 14(1): 3740, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349341

RESUMO

Polyhalogenated carbazoles (PHCZs) are emerging global pollutants found in environmental matrices, e.g., 3000 tonnes of PHCZs have been detected in the sediments of the Great Lakes. Recognition of PHCZ emissions from ongoing industrial activities worldwide is still lacking. Here, we identify and quantify PHCZ emissions from 13 large-scale industries, 12 of which previously have no data. Congener profiles of PHCZs from investigated industrial sources are clarified, which enables apportioning of PHCZ sources. Annual PHCZ emissions from major industries are estimated on the basis of derived emission factors and then mapped globally. Coke production is a prime PHCZ emitter of 9229 g/yr, followed by iron ore sintering with a PHCZ emission of 3237 g/yr. China, Australia, Japan, India, USA, and Russia are found to be significant emitters through these industrial activities. PHCZ pollution is potentially a global human health and environmental issue.


Assuntos
Carbazóis , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , China , Poluição Ambiental , Monitoramento Ambiental
14.
Adv Exp Med Biol ; 1417: 1-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223855

RESUMO

Since the sequence of hepatitis E virus (HEV) was determined from a patient with enterically transmitted non-A, non-B hepatitis in 1989, similar sequences have been isolated from many different animals, including pigs, wild boars, deer, rabbits, bats, rats, chicken, and trout. All of these sequences have the same genomic organization, which contains open reading frames (ORFs) 1, 2, and 3, although their genomic sequences are variable. Some have proposed that they be classified as new family, Hepeviridae, which would be further divided into different genera and species according to their sequence variability. The size of these virus particles generally ranged from 27 to 34 nm. However, HEV virions produced in cell culture differ in structure from the viruses found in feces. Those from cell culture have a lipid envelope and either lack or have a little ORF3, whereas the viruses isolated from feces lack a lipid envelope but have ORF3 on their surfaces. Surprisingly, most of the secreted ORF2 proteins from both these sources are not associated with HEV RNA.


Assuntos
Cervos , Hepatite C , Vírus da Hepatite E , Animais , Coelhos , Ratos , Suínos , Vírus da Hepatite E/genética , Técnicas de Cultura de Células , Galinhas , Lipídeos
15.
Adv Exp Med Biol ; 1417: 15-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223856

RESUMO

Hepatitis E virus (HEV) is a non-enveloped virus containing a single-stranded, positive-sense RNA genome of 7.2 kb, which consists of a 5' non-coding region, three open reading frames (ORFs), and a 3' non-coding region. ORF1 is diverse between genotypes and encodes the nonstructural proteins, which include the enzymes needed for virus replication. In addition to its role in virus replication, the function of ORF1 is relevant to viral adaption in culture and may also relate to virus infection and HEV pathogenicity. ORF2 protein is the capsid protein, which is about 660 amino acids in length. It not only protects the integrity of the viral genome, but is also involved in many important physiological activities, such as virus assembly, infection, host interaction, and innate immune response. The main immune epitopes, especially neutralizing epitopes, are located on ORF2 protein, which is a candidate antigen for vaccine development. ORF3 protein is a phosphoprotein of 113 or 114 amino acids with a molecular weight of 13 kDa with multiple functions that can also induce strong immune reactivity. A novel ORF4 has been identified only in genotype 1 HEV and its translation promotes viral replication.


Assuntos
Vírus da Hepatite E , Vírus da Hepatite E/genética , Fosfoproteínas , Aminoácidos , Proteínas do Capsídeo , Epitopos , RNA
16.
Adv Exp Med Biol ; 1417: 199-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223868

RESUMO

Serological and nucleic acid tests for detecting hepatitis E virus (HEV) have been developed for both epidemiologic and diagnostic purposes. The laboratory diagnosis of HEV infection depends on the detection of HEV antigen or HEV RNA in the blood, stool, and other body fluids, and serum antibodies against HEV (immunoglobulin [Ig]A, IgM, and IgG). Anti-HEV IgM antibodies and low avidity IgG can be detected during the acute phase of the illness and can last approximately 12 months, representing primary infection, whereas anti-HEV IgG antibodies can last more than several years, representing remote exposure. Thus, the diagnosis of acute infection is based on the presence of anti-HEV IgM, low avidity IgG, HEV antigen, and HEV RNA, while epidemiological investigations are mainly based on anti-HEV IgG. Although significant progress has been made in developing and optimizing different formats of HEV assays, improving their sensitivity and specificity, there are many shortcomings and challenges in inter-assay concordance, validation, and standardization. This article reviews the current knowledge on the diagnosis of HEV infection, including the most common available laboratory diagnostic techniques.


Assuntos
Vírus da Hepatite E , Vírus da Hepatite E/genética , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , RNA , Técnicas de Laboratório Clínico
17.
Anal Chim Acta ; 1260: 341207, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121656

RESUMO

The state-of-the-art SARS-CoV-2 detection methods include qRT-PCR and antibody-based lateral flow assay (LFA) point-of-care tests. Despite the high sensitivity and selectivity, qRT-PCR is slow, expensive and needs well-trained operators. On the other extreme, LFA suffers from low sensitivity albeit its fast detection speed, low detection cost and ease of use. Therefore, the continuing COVID-19 pandemic calls for a SARS-CoV-2 detection method that is rapid, convenient and cost-effective without compromise in sensitivity. Here we provide a proof-of-principle demonstration of an optimized aptamer-based nanointerferometer that enables rapid and amplification-free detection of SARS-CoV-2 spike protein-coated pseudovirus directly from human saliva with the limit of detection (LOD) of about 400 copies per mL. This LOD is on par with that of qRT-PCR, making it 1000 to 100,000-fold more sensitive than commercial LFA tests. Using various combinations of negative selections during the screens for the aptamer targeting the receptor binding domain of the spike protein of SARS-CoV-2, we isolated two aptamers that can distinguish the Omicron and Delta variants. Integrating these two aptamers with LFA strips or the nanointerferometer sensors allows both detection and differentiation of the Omicron and Delta variants which has the potential to realize rapid triage of patients infected different SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Pandemias , Oligonucleotídeos
19.
EBioMedicine ; 86: 104350, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403423

RESUMO

BACKGROUND: Influenza A (H3N2) virus (A/H3N2) has complex antigenic evolution, resulting in frequent vaccine strain updates. We aimed to evaluate the protective effect of the vaccine strains on the circulating strains from past ten years and provide a basis for finding a broader and more efficient A/H3N2 vaccine strain. METHODS: Eighty-four representative circulating A/H3N2 strains were selected from 65,791 deposited sequences in 2011-2020 and pseudotyped viruses were constructed with the VSV vector. We immunized guinea pigs with DNA vaccine containing the A/H3N2 components of the vaccine strains from 2011 to 2021 and tested neutralizing antibody against the pseudotyped viruses. We used a hierarchical clustering method to classify the eighty-four representative strains into different antigenic clusters. We also immunized animals with monovalent vaccine stock of the vaccine strains for the 2020-2021 and 2021-2022 seasons and tested neutralizing antibody against the pseudotyped viruses. FINDINGS: The vaccine strains PE/09, VI/11 and TE/12 induced higher levels of neutralizing antibody against representative strains circulating in recommended year and the year immediately prior whereas vaccine strains HK/14, HK/19 and CA/20 induced poor neutralization against all representative strains. The representative strains were divided into five antigenic clusters (AgV), which were not identical to gene clades. The AgV5 strains were most difficult to be protected among the five clusters. Compared with single-dose immunization, three doses of monovalent vaccine stock (HK/19 or CA/20) could induce stronger and broader neutralizing antibodies against strains in each of the antigenic clusters. INTERPRETATION: The protective effect of vaccine strains indicated that the accurate selection of A/H3N2 vaccine strains must remain a top priority. By increasing the frequency of immunization, stronger and broader neutralizing antibodies against strains in all antigenic clusters were induced, which provides direction for a new immunization strategy. FUNDING: This work was supported by a grant from National Key R&D Program of China (No. 2021YFC2301700).


Assuntos
Vacinas contra Influenza , Influenza Humana , Cobaias , Animais , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Estações do Ano , Testes de Inibição da Hemaglutinação , Estudos Retrospectivos , Anticorpos Neutralizantes , Anticorpos Antivirais
20.
J Antimicrob Chemother ; 77(10): 2718-2728, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35849148

RESUMO

BACKGROUND: Apramycin is under development for human use as EBL-1003, a crystalline free base of apramycin, in face of increasing incidence of multidrug-resistant bacteria. Both toxicity and cross-resistance, commonly seen for other aminoglycosides, appear relatively low owing to its distinct chemical structure. OBJECTIVES: To perform a population pharmacokinetic (PPK) analysis and predict an efficacious dose based on data from a first-in-human Phase I trial. METHODS: The drug was administered intravenously over 30 min in five ascending-dose groups ranging from 0.3 to 30 mg/kg. Plasma and urine samples were collected from 30 healthy volunteers. PPK model development was performed stepwise and the final model was used for PTA analysis. RESULTS: A mammillary four-compartment PPK model, with linear elimination and a renal fractional excretion of 90%, described the data. Apramycin clearance was proportional to the absolute estimated glomerular filtration rate (eGFR). All fixed effect parameters were allometrically scaled to total body weight (TBW). Clearance and steady-state volume of distribution were estimated to 5.5 L/h and 16 L, respectively, for a typical individual with absolute eGFR of 124 mL/min and TBW of 70 kg. PTA analyses demonstrated that the anticipated efficacious dose (30 mg/kg daily, 30 min intravenous infusion) reaches a probability of 96.4% for a free AUC/MIC target of 40, given an MIC of 8 mg/L, in a virtual Phase II patient population with an absolute eGFR extrapolated to 80 mL/min. CONCLUSIONS: The results support further Phase II clinical trials with apramycin at an anticipated efficacious dose of 30 mg/kg once daily.


Assuntos
Nebramicina , Aminoglicosídeos , Antibacterianos/farmacocinética , Humanos , Infusões Intravenosas , Nebramicina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...