Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(34): e2304990, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37818769

RESUMO

Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications.

2.
Micromachines (Basel) ; 14(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37763846

RESUMO

As feature sizes decrease, an investigation of pad unevenness caused by pad conditioning and its influence on chemical mechanical polishing is necessary. We set up a kinematic model to predict the pad wear profile caused by only diamond disk conditioning and verify it. This model shows the influences of different kinematic parameters. To keep the pad surface planar during polishing or only conditioning, we can change the sweep mode and range of the conditioner arm. The kinematic model is suitable for the prediction of the pad wear profile without considering the influence of mechanical parameters. Furthermore, based on the pad wear profile obtained from a real industrial process, we set up a static model to preliminarily investigate the influence of pad unevenness on the pad-wafer contact stress. The pad-wafer contact status in this static model can be approximated as an instantaneous state in a dynamic model. The model shows that the existence of a retaining ring helps to improve the wafer edge profile, and that pad unevenness can cause stress concentration and increase the difficulty in multi-zone pressure control of the polishing head.

3.
Materials (Basel) ; 15(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744288

RESUMO

The wafer backside grinding process has been a crucial technology to realize multi-layer stacking and chip performance improvement in the three dimension integrated circuits (3D IC) manufacturing. The total thickness variation (TTV) control is the bottleneck in the advanced process. However, the quantitative analysis theory model and adjustment strategy for TTV control are not currently available. This paper developed a comprehensive simulation model based on the optimized grinding tool configuration, and several typical TTV shapes were obtained. The relationship between the TTV feature components and the spindle posture was established. The linear superposition effect of TTV feature components and a new formation mechanism of TTV shape were revealed. It illustrated that the couple variation between the two TTV feature components could not be eliminated completely. To achieve the desired wafer thickness uniformity through a concise spindle posture adjustment operation, an effective strategy for TTV control was proposed. The experiments on TTV optimization were carried out, through which the developed model and TTV control strategy were verified to play a significant role in wafer thickness uniformity improvement. This work revealed a new insight into the fine control method to the TTV optimization, and provided a guidance for high-end grinding tool and advanced thinning process development.

4.
RSC Adv ; 8(9): 4995-5004, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35539538

RESUMO

As an ultra-clean wafer drying technique, Marangoni drying has been widely applied in the integrated circuits manufacturing process. When the wafer is vertically withdrawn from a deionization water bath, Marangoni stress along the meniscus, which is induced by the organic vapour, strips off the water film entrained on the wafer surface, and the wafer drying is thereby realized. In this work, a numerical model is presented that is comprised of the film, meniscus, and bulk regions for Marangoni drying. The model combines the transfer of organic vapour from air to water and the withdrawal of the wafer from the bath. The evolution of the entrained water film thickness, the tangential velocity, and the stress at the air-water interface are quantitatively investigated. The results reveal that the thickness of the entrained water film is reduced by more than one order of magnitude compared with the wafer withdrawn process without the Marangoni effect. In addition, owing to the receding of the contact line, it is found that the capillary pressure gradient dramatically increases, which contributes to the sudden increase in the tangential velocity in the dynamic meniscus. Moreover, the tangential velocity decreases in the static meniscus adjacent to the dynamic meniscus, which results from the redistribution of the interfacial concentration of the organic species driven by the Marangoni flow.

5.
Rev Sci Instrum ; 84(12): 125101, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387462

RESUMO

In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules' GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...