Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Anal Chim Acta ; 1312: 342765, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834279

RESUMO

The sensitive, accurate and rapid detection of carbohydrate antigen 125 (CA125) is essential for the early diagnosis and clinical management of ovarian cancer, but there is still challenge. Herein, a photoelectrochemical (PEC) immunosensor based on CdS/Bi2S3/NiS ternary sulfide heterostructured photocatalyst was presented for the detection of CA125. The CdS/Bi2S3/NiS was synthesized by a one-step hydrothermal approach. The heterojunction comprising of CdS and Bi2S3 could separate photogenerated carriers, the introduced narrow bandgap NiS could act as electron-conducting bridge to facilitate the transfer of interfacial photogenerated electrons, thereby improving the photoelectric conversion efficiency. Due to their synergistic effect, the photocurrent response produced by the composite was up to 14.6 times of pure CdS. On the basis, a PEC immunosensor was constructed by introducing the CA125 antibody through thioglycolic acid linkage. It was found that the resulting immunosensor showed good performance. Under the optimized conditions, its linear detection range was as wide as 1 pg mL-1-50 ng mL-1, and the detection limit was low to 0.85 pg mL-1. Furthermore, we experimentally tested its anti-interference, stability and reproducibility, and satisfactory results were achieved. The practicable feasibility of the sensor was confirmed by testing serum sample. Thus this work provided a simple, fast and enough sensitive approach for CA125 monitoring.


Assuntos
Bismuto , Antígeno Ca-125 , Compostos de Cádmio , Técnicas Eletroquímicas , Sulfetos , Compostos de Cádmio/química , Sulfetos/química , Humanos , Técnicas Eletroquímicas/métodos , Antígeno Ca-125/sangue , Antígeno Ca-125/análise , Bismuto/química , Limite de Detecção , Imunoensaio/métodos , Técnicas Biossensoriais/métodos
2.
Mikrochim Acta ; 191(6): 344, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802523

RESUMO

A molecularly imprinted electrochemiluminescent sensor is developed for the sensitive detection of tetracycline in environmental and food samples. The sensor uses an ionic liquid (i.e. [APMIM]Br) modified graphene-carbon nanotube composite (GMI) material as substrate, a double-layered core-shell metal-organic framework NH2-UiO-66@ZIF-8 (NUZ) loaded bipyridyl ruthenium (NUZ@Ru) as luminescent material, and a molecularly imprinted copolymer of o-phenylenediamine and hydroquinone as recognition element. The ionic liquid-modified graphene-carbon nanotube composite has a favorable three-dimensional structure, high specific surface area, and good hydrophilicity; the core-shell structured metal-organic framework has high stability and plentiful reaction sites for loading; the molecularly imprinted copolymer film has enhanced stability and recognition effect. Hence, the resulting sensor combines the merits of several materials and presents improved performance. Under the optimum detection conditions, it shows a wide linear range of 0.05 µM - 1 mM, a low detection limit of 20 nM, high selectivity, and excellent stability. It has been successfully applied to the detection of tetracycline in different samples.


Assuntos
Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Estruturas Metalorgânicas , Polímeros Molecularmente Impressos , Tetraciclina , Tetraciclina/análise , Tetraciclina/química , Polímeros Molecularmente Impressos/química , Estruturas Metalorgânicas/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Grafite/química , Nanotubos de Carbono/química , Contaminação de Alimentos/análise , Líquidos Iônicos/química , Antibacterianos/análise , Antibacterianos/química , Poluentes Químicos da Água/análise , Impressão Molecular
3.
Talanta ; 276: 126243, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749160

RESUMO

Herein, we fabricated an electrochemical (EC) and UV-visible absorption (UV-vis) dual mode split-type immunoassay for the detection of 17ß-estradiol (E2), which was mediated by liposome encapsulated methylene blue (MB@lip). MB molecule acted as the probe in the EC and UV-vis absorption dual mode detections, and its release was controlled by liposome. The competitive immune recognition was conducted between the E2 in the sample and E2 conjugated bovine serum protein (E2-BSA) adsorbed on the 96-wells plate in combining with E2 antibody labeled with MB@lip (E2-Ab/MB@lip). MB molecule could be released from the resulting immune composite of E2-BSA/E2-Ab/MB@lip in the presence of Triton X-100, and quantified by UV-vis and EC methods. The three-dimensional cross-linked reduced graphene oxide/Ti3C2 (3D-rGO/Ti3C2) aerogel was prepared through hydrothermal method, then complexed with the electroactive anthraquinone (AQ) and used as the electrode modified material. The AQ/3D-rGO/Ti3C2 composite had high surface area and provided abundant adsorption sites for MB, and the displacement/competitive behavior between AQ and MB could dexterously achieve the ratiometric EC detection of E2. In addition, the inherent blue color of MB allowed it to be analyzed by UV-vis absorption method. The proposed dual mode detection method exhibited broad linear ranges of 0.1 pg mL-1 to 50 ng mL-1 (by UV-vis) and 0.03 pg mL-1 to 50 ng mL-1 (by EC) for E2 detection, and the detection limits were 0.023 pg mL-1 (S/N = 3) and 8.0 fg mL-1 (S/N = 3), respectively. Moreover, the proposed immunoassay exhibited good practicability and was applied to monitor E2 in milk and serum successfully.


Assuntos
Técnicas Eletroquímicas , Estradiol , Lipossomos , Azul de Metileno , Azul de Metileno/química , Estradiol/química , Estradiol/sangue , Estradiol/análise , Lipossomos/química , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Animais , Espectrofotometria Ultravioleta , Bovinos , Limite de Detecção , Soroalbumina Bovina/química
4.
Anal Methods ; 16(20): 3278-3286, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38738557

RESUMO

Dextromethorphan (DXM) is a widely utilized central antitussive agent, which is frequently abused by individuals seeking its recreational effect. But DXM overdose can cause some adverse effects, including brain damage, loss of consciousness, and cardiac arrhythmias, and hence its detection is significant. Herein, an electrochemical sensor based on a Cu-coordinated molecularly imprinted polymer (Cu-MIP) was fabricated for its detection. For constructing the sensor, nitrogen-doped carbon nanosheets (CCNs) were prepared through calcining chitin under an argon atmosphere, and molybdenum disulfide (MoS2) was allowed to grow on their surface. Subsequently, the obtained MoS2/CCNs composite was employed to modify a glassy carbon electrode (GCE), and the Cu-MIP was electrodeposited on the electrode in a Cu-1,10-phenanthroline (Cu-Phen) solution containing DXM, where Cu2+ played a role in facilitating electron transfer and binding DXM. Due to the large specific surface area, good electrocatalytic properties and recognition of the resulting composite, the resulting Cu-MIP/MoS2/CCNs/GCE showed high selectivity and sensitivity. Under optimized experimental conditions, the peak current of DXM and its concentration exhibited a good linear relationship over the concentration range of 0.1-100 µM, and the limit of detection (S/N = 3) was 0.02 µM. Furthermore, the electrochemical sensor presented good stability, and it was successfully used for the determination of DXM in pharmaceutical, human serum and urine samples.


Assuntos
Carbono , Cobre , Dextrometorfano , Dissulfetos , Técnicas Eletroquímicas , Polímeros Molecularmente Impressos , Molibdênio , Molibdênio/química , Dissulfetos/química , Dextrometorfano/análise , Dextrometorfano/química , Dextrometorfano/urina , Cobre/química , Técnicas Eletroquímicas/métodos , Carbono/química , Polímeros Molecularmente Impressos/química , Quitina/química , Humanos , Limite de Detecção , Eletrodos , Antitussígenos/química , Antitussígenos/análise , Antitussígenos/urina
5.
J Hazard Mater ; 465: 133234, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157818

RESUMO

A new ferrofluid extractant (Fe3O4 @SiO2-WDES) was ingeniously prepared by coating magnetic Fe3O4 @SiO2 microspheres with water-based deep eutectic solvent (WDES) and used for dispersive liquid-liquid microextraction (DLLME) and HPLC determination of naphthalene-derived plant growth regulators (PGRs, i.e., 1-naphthylacetic acid, 2-naphthylacetic acid, 1-naphthoxy acetic acid, 2-naphthyloxyacetic acid and 1-naphthylacetamide) in edible oil. Herein, mass transfer of the analytes in DLLME was significantly enhanced via increasing the contact surface by employing the microspheres as the supporter and dispersant of WDES, and phase separation can be efficiently achieved using an external magnet rather than centrifugation in traditional DLLME. Response surface methodology (RSM) based on Box-Behnken design (BBD) was employed for the optimization of core experimental conditions, and Analytical Eco-Scale and Analytical GREEnness Metric Approaches were adopted to evaluate the degree of greenness of the procedure. Under the optimal conditions, satisfactory performances of linearity ranged from 5 to 100 µg/L (R2 ≥ 0.9982), limit of detection (0.58-0.91 µg/L), limit of quantitation (1.9-3.0 µg/L), precision (RSDs ≤ 5.5%), recovery (81.3%-108.1%) and negligible matrix effect were achieved, which introduced a promising alternative route for the determination of naphthalene-derived plant growth regulators in edible oil.


Assuntos
Microextração em Fase Líquida , Água , Reguladores de Crescimento de Plantas , Solventes Eutéticos Profundos , Microextração em Fase Líquida/métodos , Dióxido de Silício , Solventes , Naftalenos , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção
6.
Anal Methods ; 15(37): 4883-4891, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37712204

RESUMO

Coatings are considered to play a crucial role in solid-phase microextraction (SPME). In this work, a novel coating named ZIF-67/[HOEMIM]BF4 was fabricated through in situ potentiostatic electrodeposition in methanol solutions containing ZIF-67 precursors and 1-(2'-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([HOEMIM]BF4). Compared with the traditional solvothermal method, this method reduced the synthesis time and enabled ZIF-67 to grow directly on the surface of stainless-steel wire, effectively simplifying the preparation process and improving the coating reproducibility. Owing to the inherent characteristics such as high porosity and high thermal and mechanical stability, and the impressive morphological regulation and extraction function of [HOEMIM]BF4, the developed coating exhibited a prolonged service life and a better extraction capacity for trace polycyclic aromatic hydrocarbons (PAHs) compared to single ZIF-67 and commercial fibers. Under the optimal conditions, the linear range of the ZIF-67/[HOEMIM]BF4-based SPME-GC method was 0.01-500 µg L-1, and the detection limit was 0.27-5.2 ng L-1. When applied in the determination of PAHs in a real water sample, recoveries between 85.6-117.3% were obtained, indicating the potential of ZIF-67/[HOEMIM]BF4 in the high efficiency SPME and GC analysis of PAHs.

7.
Analyst ; 148(17): 4203-4212, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37539587

RESUMO

Extraction and determination of trace hazardous components from complex matrices continue to attract public attention. In this work, magnetic porous carbon (MPC) was prepared for efficient magnetic solid phase extraction (MSPE) of fluoroquinolone (FQ) antibiotics in food and water samples. To prepare the MPC, an Fe-based metal-organic framework (MIL-101(Fe)) was grown on a network of graphene oxide and multi-walled carbon nanotubes through a hydrothermal method, and then a carbonization process under a nitrogen atmosphere was carried out to obtain the MPC with high specific surface area and good magnetism. Four target FQs including ciprofloxacin (CIP), enrofloxacin (ENO), lomefloxacin (LOM) and ofloxacin (OFX) were enriched using the as-prepared MPC and determined by coupled high-performance liquid chromatography. Under the optimal conditions, the established MSPE-HPLC-UV detection method exhibited a linear range of 0.5-800 µg L-1 and detection limits of 0.11-0.18 µg L-1 with relative standard deviations (RSDs) of 0.5-4.8%. When applied in the determination of the above four FQs in real samples such as lake water, milk and pork, good recoveries between 85.2 and 103.7% were obtained, and the RSDs were less than 4.8%. This work indicates that the MPC material can be a good adsorption material and has good application prospects in antibiotics enrichment and/or removal from complex samples.


Assuntos
Estruturas Metalorgânicas , Nanotubos de Carbono , Estruturas Metalorgânicas/química , Porosidade , Fluoroquinolonas/análise , Fluoroquinolonas/química , Antibacterianos/análise , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Adsorção , Água , Fenômenos Magnéticos , Limite de Detecção
8.
Biosens Bioelectron ; 237: 115558, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531891

RESUMO

Programmed death ligand-1 (PD-L1) can enhance the immune tolerance of tumor cells by suppressing the activity of T-cells, and is one of the culprits that lead to the immune escape of tumor cells. Thus, the sensitive and portable detection of PD-L1 levels is essential for many types of tumor prognosis. Herein, a novel dual-mode analytical device for the ultrasensitive detection of PD-L1 has been developed. In this configuration, an advanced organic-inorganic hybrid material of poly(3,4-ethylenedioxythiophene) -BiOBr0.8I0.2 is designed as photocathode to enhance the photogenerated electron migration efficiency of the MWCNTs/SnS2-photoanode by external circuit, amplifying cathodic photocurrent without extra energy supply. The PD-L1 aptamer is loaded on the photocathode surface to ensure selectivity. The obtained sensing platform can achieve highly sensitive and specific detection of PD-L1 in complex environment, with a low detection limit of 0.29 pg mL-1. On the other hand, electrochromic material Prussian blue (PB) and MWCNTs/SnS2 are integrated to fabricate a portable sensing chip for PD-L1. Under illumination, photogenerated electrons of MWCNTs/SnS2 are injected into Prussian blue, and the blue PB is reduced to white product, indicating the concentration of PD-L1, without need of other instrument. This self-powered photoelectrochemical and visual analysis system has good practicability and is a promising clinical diagnosis tool.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Antígeno B7-H1
9.
Mikrochim Acta ; 190(6): 236, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37219633

RESUMO

A dual-mode electrochemical sensor was fabricated for carbendazim (CBD) detection. Biomass-derived carbon loaded gold nanoparticles (AuNPs/BC) were firstly coated on a glassy carbon electrode (GCE), and then molecularly imprinted polymer (MIP) of o-aminophenol was prepared on the resulting AuNPs/BC/GCE through electrochemical method in the presence of CBD. The AuNPs/BC had excellent conductivity, large surface and good electrocatalysis, while the imprinted film presented good recognition. Thus, the obtained MIP/AuNPs/BC/GCE exhibited sensitive current response to CBD. Furthermore, the sensor displayed good impedance response to CBD. Hence, a dual-mode detection platform for CBD was established. Under optimum conditions, the linear response ranges were as wide as 1.0 nM - 15 µM (by differential pulse voltammetry, DPV) and 1.0 nM - 10 µM (by electrochemical impedance spectroscopy, EIS), and the detection limits for these two methods were as low as 0.30 nM (S/N = 3) and 0.24 nM (S/N = 3), respectively. The sensor also had high selectivity, stability and reproducibility. The sensor was applied to detect CBD in spiked real samples, including cabbage, peach, apple and lake water, and the recoveries were 85.8-108% (by DPV) and 91.4-110% (by EIS); the relative standard deviations (RSD) were 3.4-5.3% (by DPV) and 3.7-5.1% (by EIS), respectively. The results were consistent with that obtained by high-performance liquid chromatography. Therefore, this sensor is a simple and effective tool for CBD detection, and it has good application potential.


Assuntos
Ouro , Nanopartículas Metálicas , Biomassa , Reprodutibilidade dos Testes , Carbono
10.
Anal Chim Acta ; 1262: 341243, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37179060

RESUMO

In this study, PO43- doped Bi2WO6 (BWO-PO) was prepared by hydrothermal method, and then copolymer of thiophene and thiophene-3-acetic acid (P(Th-T3A)) was chemically deposited on the BWO-PO surface. The introduction of PO43- created point defects, greatly improving the photoelectric catalytic performance of Bi2WO6; the copolymer semiconductor could form heterojunction with Bi2WO6 to promote the separation of photo-generated carriers, due to its proper band gap. Furthermore, the copolymer could enhance the light absorption ability and photo-electronic conversion efficiency. Hence, the composite had good photoelectrochemical properties. When it was combined with carcinoembryonic antibody through the interaction of -COOH groups of the copolymer and the end groups of antibody for constructing ITO-based PEC immunosensor, the resulting sensor exhibited superb response to carcinoembryonic antigen (CEA), with a wide linear range of 1 pg/mL-20 ng/mL, and a relatively low detection limit of 0.41 pg/mL. It also showed high anti-interference ability, stability, and simplicity. The sensor has been successfully applied to monitor the concentration of CEA in serum. The sensing strategy can also be applied to the detection of other markers by changing the recognition elements, hence it has good application potential.


Assuntos
Ácido Acético , Técnicas Biossensoriais , Limite de Detecção , Antígeno Carcinoembrionário , Técnicas Biossensoriais/métodos , Fosfatos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Polímeros/química
11.
Nano Lett ; 23(10): 4375-4383, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159332

RESUMO

Microorganism-mediated self-assembling of living formulations holds great promise for disease therapy. Here, we constructed a prebiotic-probiotic living capsule (PPLC) by coculturing probiotics (EcN) with Gluconacetobacter xylinus (G. xylinus) in a prebiotic-containing fermentation broth. Through shaking the culture, G. xylinus secretes cellulose fibrils that can spontaneously encapsulate EcN to form microcapsules under shear forces. Additionally, the prebiotic present in the fermentation broth is incorporated into the bacterial cellulose network through van der Waals forces and hydrogen bonding. Afterward, the microcapsules were transferred to a selective LB medium, which facilitated the colonization of dense probiotic colonies within them. The in vivo study demonstrated that PPLC-containing dense colonies of EcN can antagonize intestinal pathogens and restore microbiota homeostasis by showing excellent therapeutic performance in treating enteritis mice. The in situ self-assembly of probiotics and prebiotics-based living materials provides a promising platform for the treatment of inflammatory bowel disease.


Assuntos
Doenças Inflamatórias Intestinais , Prebióticos , Animais , Camundongos , Cápsulas , Técnicas de Cocultura , Celulose
12.
Anal Chem ; 95(10): 4795-4802, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36867090

RESUMO

Simultaneous detection of different disease markers is significant for clinical diagnosis. In this work, a dual-signal electrochemiluminescence (ECL) immunosensor was constructed for the simultaneous detection of carbohydrate antigen 125 (CA125) and human epithelial protein 4 (HE4) markers of ovarian cancer. The results showed that the Eu metal-organic framework-loaded isoluminol-Au nanoparticles (Eu MOF@Isolu-Au NPs) could generate a strong anodic ECL signal through synergistic interaction; as cathodic luminophore, the composite of carboxyl-functionalized CdS quantum dots and N-doped porous carbon-anchored Cu single-atom catalyst could catalyze H2O2 co-reactant to produce a large amount of •OH and O2•-, making the anodic and cathodic ECL signals significantly increase and become stable. Based on the enhancement strategy, a sandwich immunosensor was constructed for the simultaneous detection of ovarian cancer-associated CA125 and HE4 markers by combining antigen-antibody specific recognition and magnetic separation technique. The resulting ECL immunosensor displayed high sensitivity, a wide linear response range of 0.005∼500 ng mL-1, and low detection limits of 0.37 and 1.58 pg mL-1 for CA125 and HE4, respectively. Furthermore, it had excellent selectivity, stability, and practicability in the detection of real serum samples. This work establishes a framework for in-depth design and application of single-atom catalysis in ECL sensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias Ovarianas , Pontos Quânticos , Humanos , Feminino , Técnicas Biossensoriais/métodos , Ouro , Peróxido de Hidrogênio , Imunoensaio/métodos , Neoplasias Ovarianas/diagnóstico , Medições Luminescentes/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos
13.
Mikrochim Acta ; 190(4): 155, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964303

RESUMO

An electrochemiluminescence (ECL) sensor based on molecular imprinting polymer and SiO2 nanoparticles loaded Ru(bpy)3 and nitrogen-doped carbon quantum dots (NCQDs) is constructed for citrinin detection. The Ru(bpy)3 acts as ECL emitter, and the NCQDs cooperate with tri-n-propylamine (TPA) in solution as a coreactant to facilitate the luminescence. The citrinin imprinted poly(p-aminothiophenol) film is deposited on the surface of the luminophore by electrochemical method, which can immobilize the luminophore besides recognizing the target. The obtained ECL sensor exhibits high sensitivity, stability, and reproducibility. The change of ECL intensity and the logarithm of citrinin concentration display a good linear relationship in the range 1.0 to 100 pg mL-1, and the detection limit is 5 fg mL-1. When it is applied to the detection of citrinin contents in food sample (i.e., rice and millet) solutions, the RSD is less than 6.1%, and the recoveries for spiked standards range from 95.5 to 102.0%. Hence, this work provides a promising alternative for citrinin detection.

14.
Biosens Bioelectron ; 220: 114929, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36417777

RESUMO

Molecularly imprinted polymers (MIPs) are widely used as artificial recognition element in sensing field, but their electrochemical sensing performances are generally affected by their poor catalytic activity and unruly condition change. In this work, an MIP film with catalysis (Fe-DMMIP) is constructed by electrodeposition of Fe-coordinated aminophenanthroline and 3,4-ethylenedioxythiophene on N, S doped C material, using cannabinoid (CBD) as template molecule. Due to the presence of Fe-N active sites, the obtained Fe-DMMIP possesses enzyme-like catalytic activity besides conventional recognition capability. Accordingly, the sensor exhibits high electrocatalytic activity and selectivity. Moreover, the Fe-DMMIP can produce a stable and well-defined signal as an internal reference around 0 V (vs. Ag/AgCl) for ratiometric sensing. Under the optimal conditions, the ratiometric signal is linear to CBD concentration in the range of 0.004-0.8 µmol L-1 (R2 = 0.9946) with a detection limit of 2.9 nmol L-1. The ratiometric sensor shows high reproducibility, stability and applicability. In addition, through replacing the template molecule, the resulting biomimetic sensor also exhibits good performance in sensing other psychoactive substances such as melatonin and 5-hydroxytryptophan, with LODs of 19 nmol L-1 and 8 nmol L-1for them, respectively. Therefore, the developed sensing platform has good prospects, and this work provides a new way for developing ratiometric electrochemical sensors with high sensitivity, reproducibility and anti-interference ability.


Assuntos
Técnicas Biossensoriais , Polímeros Molecularmente Impressos , Reprodutibilidade dos Testes , Biomimética , Catálise
15.
Anal Chem ; 94(51): 17787-17794, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36520819

RESUMO

Gastric cancer is a malignant tumor, and its early diagnosis remains challenging due to the lack of simple and sensitive detection methods and specific biomarkers. In this work, to improve the detection reliability, we developed a dual-mode detection strategy for the detection of two biomarkers associated with it. First, an N- and S-doped carbon dots-N-rich porous carbon nanoenzyme (N/S-CDs@NC) was prepared by a two-step pyrolysis of thiourea-penetrated zinc-based zeolite imidazole framework. It was then combined with the 3,3',5,5'-tetramethylbenzidine-H2O2 system for the colorimetric detection of d-amino acids (i.e., d-proline (d-Pro) and d-alanine (d-Ala)) in saliva, based on d-amino acid oxidase catalyzing d-amino acid oxidation to produce H2O2. In this way, the low detection limits (S/N = 3) of d-Pro and d-Ala were 0.14 and 0.35 µM, respectively. Furthermore, N/S-CDs@NC was combined with the luminol-H2O2 electrochemiluminescence (ECL) system and magnetic immune accumulation/separation strategy to detect the carcinoembryonic antigen (CEA) in serum. The porous N/S-CDs@NC could facilitate participant contact, promote the generation of hydroxyl radical (•OH), and electrostatically attract •OH, thereby significantly amplifying the ECL signal of luminol and improving the signal stability. Thus, the detection mode showed considerable sensitivity and selectivity, with a low detection limit of 0.26 pg mL-1. The strategy proposed in this work can also be used for the detection of other disease markers by substituting the recognition elements, thus having good application potential.


Assuntos
Técnicas Biossensoriais , Neoplasias Gástricas , Humanos , Carbono/química , Luminol/química , Antígeno Carcinoembrionário , Aminoácidos , Neoplasias Gástricas/diagnóstico , Colorimetria , Porosidade , Peróxido de Hidrogênio , Reprodutibilidade dos Testes , Catálise , Limite de Detecção , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos
16.
ACS Sens ; 7(10): 3077-3084, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36198618

RESUMO

Herein, a dual-mode electrochemical competitive immunosensor was constructed for the detection of 17ß-estradiol (E2) based on differential pulse voltammetry (DPV) and chronoamperometry (i-t). During the immune recognition process, the E2 antibody (E2-Ab) was immobilized on the Cd2+/Au/polydopamine/Ti3C2 (Cd2+/Au/pDA/Ti3C2) composite-modified electrode; then, the E2-conjugated bovine serum albumin (E2-BSA) was labeled with a copper-based metal-organic framework (Cu-MOF) and competed with E2 in combining the E2-Ab. The Cu-MOF was not only an electroactive species but also possessed good electrocatalytic activity toward H2O2. Thus, E2 could be quantified according to the peak current change of the Cu-MOF in DPV curve or the variation of H2O2 reduction current. For DPV quantification, Cd2+ was introduced as an internal reference in this case, and a highly reproducible ratio readout was obtained. The as-prepared dual-mode E2 electrochemical immunosensor showed good linear relationship in the ranges of 1 pg mL-1-10 ng mL-1 (DPV) and 10 pg mL-1-10 ng mL-1 (i-t), and the detection limits were 0.47 and 5.4 pg mL-1 (S/N = 3), respectively. Furthermore, the dual-mode electrochemical immunosensor exhibited good practicability in real sample analysis.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Cobre , Técnicas Eletroquímicas , Imunoensaio , Cádmio , Titânio , Peróxido de Hidrogênio , Estradiol/análise
17.
Biosens Bioelectron ; 216: 114650, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049348

RESUMO

In this work, a smart tetracycline (TC) imprinted material (DSMIP@Mn3O4) is prepared via atom transfer radical polymerization of dual ionic liquid (IL) monomers on the surface of Mn3O4 nanoparticles. The obtained DSMIP@Mn3O4 shows a core-shell structure with a sphere shape and has high oxidase-like activity and recognition ability. It has been used to construct colorimetric and electrochemical detection platforms for TC. The colorimetric detection is based on the recombined TC blocking the molecular channels on the surface of DSMIP@Mn3O4, which hinders the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine to the blue product. The linear detection range is 0.5 µM-150 µM and the low detection limit is 0.1 µM. This system is further developed for the visual semi-quantitative detection of TC by using a smartphone. Furthermore, the DSMIP@Mn3O4 is combined with IL-modified carbon nanotube-graphene composite for the sensitively electrochemical detection of TC, which shows a wide linear range of 0.01 µM-20 µM and a low detection limit of 5 nM. The proposed methods have high selectivity and reproducibility and suit different detection situations. Their pracibility is evaluated by determining TC in different samples, and the measurement results are consistent with that obtained by high-performance liquid chromatography. Hence, the colorimetric and electrochemical detection platforms have good application potential.


Assuntos
Técnicas Biossensoriais , Grafite , Líquidos Iônicos , Impressão Molecular , Nanotubos de Carbono , Técnicas Biossensoriais/métodos , Colorimetria , Técnicas Eletroquímicas/métodos , Grafite/química , Líquidos Iônicos/química , Limite de Detecção , Impressão Molecular/métodos , Nanotubos de Carbono/química , Oxirredutases , Reprodutibilidade dos Testes , Tetraciclina
18.
Anal Chim Acta ; 1227: 340301, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36089313

RESUMO

In this work, a ratiometric electrochemical sensor was developed for the detection of perphenazine (PPZ). The sensor was constructed by electrodepositing Cu-coordinated molecularly imprinted polymer (Cu-MIP) on Ag nanoparticles (NPs) modified flexible porous carbon cloth. The Cu-MIP showed highly electrochemical response because of the enhanced adsorptive ability and electronic properties of Cu2+ chelation; Ag NPs could provide a stable and effective reference signal for ratiometric quantification. Thus the resulted sensor not only displayed high selectivity and sensitivity, but also exhibited satisfactory reproducibility and anti-interference ability. Under the optimum conditions, the quantitative detection of PPZ was performed with differential pulse voltammetry. It was found that the peak current ratio of PPZ and Ag NP was linear to the concentration of PPZ in the range of 1-700 nmol L-1 (R2 = 0.9968), and the limit of detection was 0.43 nmol L-1 (S/N = 3). The practicability of the sensor was examined by determining human serum and pharmaceutical samples, and satisfactory results and recoveries (ranging from 92.46% to 104.90%) were achieved.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Carbono/química , Técnicas Eletroquímicas/métodos , Humanos , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Perfenazina , Porosidade , Reprodutibilidade dos Testes , Prata
19.
Biosens Bioelectron ; 214: 114492, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779409

RESUMO

A novel electrochemiluminescence (ECL) sensing platform was developed for the detection of neuron-specific enolase (NSE), based on the nanocomposite of mesoporous silica encapsulated CuO2 nanoparticles and electrostatically attracted luminol. An antifouling membrane of polyvinylidene fluoride modified by polyethyleneimine and dopamine was introduced to improve the immobilization of nanocomposite and the stability of ECL signal; Au nanoparticles were loaded on the membrane surface for binding the antibody. The CuO2 nanoparticles were capable of supplying H2O2, while the amino ionic liquid functionalized boron nitride quantum dots as co-reactant of luminol could effectively enhance the ECL signal. The resulting ECL immunosensing platform thus showed excellent performance. Over the concentration range of 5-500 ng/mL, it presented a good linear response; the detection limit was down to 24.5 pg/mL. In addition, it had high selectivity and stability. The sensor has been successfully applied to determine target NSE in human serum samples. This work provides some insights into the further design of high-performance ECL sensors.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Líquidos Iônicos , Nanopartículas Metálicas , Nanocompostos , Pontos Quânticos , Incrustação Biológica/prevenção & controle , Técnicas Biossensoriais/métodos , Compostos de Boro , Cobre , Técnicas Eletroquímicas/métodos , Ouro , Humanos , Peróxido de Hidrogênio , Limite de Detecção , Medições Luminescentes/métodos , Luminol , Fosfopiruvato Hidratase , Dióxido de Silício
20.
Artigo em Inglês | MEDLINE | ID: mdl-35535992

RESUMO

Organic-inorganic hybrid materials are rarely applied in photoelectrochemical (PEC) sensing because of the serious charge-carrier recombination in organic conjugated polymers. In this work, a series of poly(3,4-ethylenedioxythiophene) (PEDOT)/ZnIn2S4 hybrid flower-shaped microspheres were synthesized using ionic liquids (ILs) as the supporting electrolyte for EDOT electropolymerization and as the regulating reagent for controlling ZnIn2S4 growth, respectively. It was found that the hybrid material [HOEMIM]NTf2-PEDOT/[HOEMIM]BF4-ZnIn2S4 ([HOEMIM]+: 1-hydroxyethyl-3-methylimidazolium cation; NTf2-: bis(trifluoromethanesulfonyl)amide) was the optimal one, with a smooth, transparent, and continuous polymer film covering the uniform and ordered cross-linked nanosheet arrays. The hybrid material could produce a high anodic photocurrent, which was about 78 times as high as that produced by the [HOEMIM]BF4-ZnIn2S4. The enhancement effect should be the highest among all the organic-inorganic hybrid materials reported so far. This was related to its unique micromorphology structure, p-n heterojunction, and the coexisting ILs, which restrained the charge-carrier recombination in PEDOT and enhanced PEDOT sensitization to ZnIn2S4. Then, a carcinoembryonic antigen PEC immunosensor was constructed based on the photoanodic sensing platform, and it exhibited good performance. Furthermore, the [HOEMIM]BF4-ZnIn2S4 was treated with NaClO solution to create the [HOEMIM]NTf2-PEDOT/[HOEMIM]BF4-S-ZnwInxSyOz general platform for both photoanodic and photocathodic sensing. As a proof of concept, L-cysteine and dissolved oxygen were used as models for photoanodic and photocathodic sensing, respectively. The results demonstrated that the general PEC platform was quite competent. This work opens up a window for the design of organic-inorganic hybrid PEC materials and will promote the application of such hybrid materials in PEC biosensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...