Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755662

RESUMO

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Lesão Pulmonar Aguda , Flavanonas , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , NF-kappa B , Animais , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Flavanonas/uso terapêutico , Flavanonas/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Proteínas de Membrana , Heme Oxigenase-1
2.
Biomed Pharmacother ; 170: 116028, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113627

RESUMO

Klebsiella pneumoniae (Kpn) is an important pathogen of hospital-acquired pneumonia, which can lead to sepsis and death in severe cases. In this study, we simulated pneumonia induced by Kpn infection in mice to investigate the therapeutic effect of naringin (NAR) on bacterial-induced lung inflammation. Mice infected with Kpn exhibited increases in white blood cells (WBC) and neutrophils in the peripheral blood and pathological severe injury of the lungs. This injury was manifested by increased expression of the inflammatory cytokines interleukin (IL)- 18, IL-1ß, tumor necrosis factor-α (TNF-α) and IL-6, and elevated the expression of NLRP3 protein. NAR treatment could decrease the protein expression of NLRP3, alleviate lung inflammation, and reduce lung injury in mice caused by Kpn. Meanwhile, molecular docking results suggest NAR could bind to NLRP3 and Surface Plasmon Resonance (SPR) analyses also confirm this result. In vitro trials, we found that pretreated with NAR not only inhibited nuclear translocation of nuclear factor (NF)-κB protein P65 but also attenuated the protein interaction of NLRP3, caspase-1 and ASC and inhibited the assembly of NLRP3 inflammasome in mice AMs. Additionally, NAR could reduce intracellular potassium (K+) efflux, inhibiting NLRP3 inflammasome activation. These results indicated that NAR could protect against Kpn-induced pneumonia by inhibiting the overactivation of the NLRP3 inflammasome signaling pathway. The results of this study confirm the efficacy of NAR in treating bacterial pneumonia, refine the mechanism of action of NAR, and provide a theoretical basis for the research and development of NAR as an anti-inflammatory adjuvant.


Assuntos
Inflamassomos , Pneumonia , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Klebsiella pneumoniae , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Pneumonia/tratamento farmacológico
3.
Arch Virol ; 167(12): 2519-2528, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36083350

RESUMO

The wide spread of coronavirus disease 2019 (COVID-19) has significantly threatened public health. Human herd immunity induced by vaccination is essential to fight the epidemic. Therefore, highly immunogenic and safe vaccines are necessary to control SARS-CoV-2, whose S protein is the antigenic determinant responsible for eliciting antibodies that prevent viral entry and fusion. In this study, we developed a SARS-CoV-2 DNA vaccine expressing the S protein, named pVAX-S-OP, which was optimized according to the human-origin codon preference and using polyinosinic-polycytidylic acid as an adjuvant. pVAX-S-OP induced specific antibodies and neutralizing antibodies in BALB/c and hACE2 transgenic mice. Furthermore, we observed 1.43-fold higher antibody titers in mice receiving pVAX-S-OP plus adjuvant than in those receiving pVAX-S-OP alone. Interferon gamma production in the pVAX-S-OP-immunized group was 1.58 times (CD3+CD4+IFN-gamma+) and 2.29 times (CD3+CD8+IFN-gamma+) lower than that in the pVAX-S-OP plus adjuvant group but higher than that in the control group. The pVAX-S-OP vaccine was also observed to stimulate a Th1-type immune response. When, hACE2 transgenic mice were challenged with SARS-CoV-2, qPCR detection of N and E genes showed that the viral RNA loads in pVAX-S-OP-immunized mice lung tissues were 104 times and 106 times lower than those of the PBS control group, which shows that the vaccine could reduce the amount of live virus in the lungs of hACE2 mice. In addition, pathological sections showed less lung damage in the pVAX-S-OP-immunized group. Taken together, our results demonstrated that pVAX-S-OP has significant immunogenicity, which provides support for developing SARS-CoV-2 DNA candidate vaccines.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunidade Celular , Camundongos Transgênicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de DNA/genética
4.
Microb Pathog ; 150: 104729, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33429053

RESUMO

The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) cause a huge economic loss around the pig industry worldwide; the NADC30-like PRRSV have attracted much attention outbreaks in China in recent years. Recombination between PRRSV subtypes, point mutations, insertions and deletions that contribute to the emergence of new variants in the genome. In this study, the PRRSV-HB-16-China-2019 strain's full-length genomic sequence shares 93.0% nucleotide similarity to NADC30 PRRSV without any gene insertion. Compared with VR-2332, it has an NSP2 coding region that is different from NADC30, which has a discontinuous 206-aa (111-aa from position 323 to 433 and 95-aa from position 476 to 570) deletion. Compared with other NADC30-Like strains, it has a discontinuous 75-amino acid (75-aa from position 476 to 552) deletion, which was first reported. Notably, the strain, PRRSV-HB-16-China-2019, contained an addition a 1-aa deletion in ORF5 and a unique 3-nt deletion in 3'-UTR similar to NADC30, the strain is recombined between a NADC30-like strain and a vaccine strain named RespPRRS MLV(parental strain VR-2332). Our findings indicate that PRRSV-HB-16-China-2019 is a new NSP2-deletion NADC30-like strain with certain deletions and mutations. Our results show that the emergence of the new NADC30-like strain has increased the difficulty of PRRSV prevention in China.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , China , Variação Genética , Genoma Viral , Filogenia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Recombinação Genética , Suínos
5.
Front Immunol ; 11: 619829, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33708193

RESUMO

Newcastle disease virus (NDV) infects poultry and antagonizes host immunity via several mechanisms. Dendritic cells (DCs) are characterized as specialized antigen presenting cells, bridging innate and adaptive immunity and regulating host resistance to viral invasion. However, there is little specific knowledge of the role of DCs in NDV infection. In this study, the representative NDV lentogenic strain LaSota was used to explore whether murine bone marrow derived DCs mature following infection. We examined surface molecule expression and cytokine release from DCs as well as proliferation and activation of T cells in vivo and in vitro in the context of NDV. The results demonstrated that infection with lentogenic strain LaSota induced a phenotypic maturation of immature DCs (imDCs), which actually led to curtailed T cell responses. Upon infection, the phenotypic maturation of DCs was reflected by markedly enhanced MHC and costimulatory molecule expression and secretion of proinflammatory cytokines. Nevertheless, NDV-infected DCs produced the anti-inflammatory cytokine IL-10 and attenuated T cell proliferation, inducing Th2-biased responses. Therefore, our study reveals a novel understanding that DCs are phenotypically mature but dysfunctional in priming T cell responses during NDV infection.


Assuntos
Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Doença de Newcastle/imunologia , Linfócitos T/imunologia , Animais , Proliferação de Células/fisiologia , Embrião de Galinha , Camundongos , Camundongos Endogâmicos C57BL , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...