Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722818

RESUMO

AIM: Abdominal aortic aneurysm (AAA) is a common, serious vascular disease with no effective pharmacological treatment. The nucleoside adenosine plays an important role in modulating vascular homeostasis, which prompted us to determine whether adenosine kinase (ADK), an adenosine metabolizing enzyme, modulates AAA formation via control of intracellular adenosine level, and to investigate the underlying mechanisms. METHODS AND RESULTS: We used a combination of genetic and pharmacological approaches in murine models of AAA induced by calcium chloride (CaCl2) application or angiotensin II (Ang II) infusion to study the role of ADK in the development of AAA. In vitro functional assays were performed by knocking down ADK with adenovirus-short hairpin RNA in human vascular smooth muscle cells (VSMCs), and the molecular mechanisms underlying ADK function were investigated using RNA-sequencing, isotope tracing and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). Heterozygous deficiency of Adk protected mice from CaCl2- and Ang II-induced AAA formation. Moreover, specific knockout of Adk in VSMCs prevented Ang II-induced AAA formation, as evidenced by reduced aortic extracellular elastin fragmentation, neovascularization and aortic inflammation. Mechanistically, ADK knockdown in VSMCs markedly suppressed the expression of inflammatory genes associated with AAA formation, and these effects were independent of adenosine receptors. Metabolic flux and ChIP-qPCR results showed that ADK knockdown in VSMCs decreased S-adenosylmethionine (SAM)-dependent transmethylation, thereby reducing H3K4me3 binding to the promoter regions of the genes that are associated with inflammation, angiogenesis and extracellular elastin fragmentation. Furthermore, the ADK inhibitor ABT702 protected mice from CaCl2-induced aortic inflammation, extracellular elastin fragmentation and AAA formation. CONCLUSION: Our findings reveal a novel role for ADK inhibition in attenuating AAA via epigenetic modulation of key inflammatory genes linked to AAA pathogenesis.

2.
Cells ; 13(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247859

RESUMO

Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity, a characteristic that has intrigued cardiovascular researchers for decades. Recently, it has become increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF) complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene regulation. In this review, we provide a summary of research related to the involvement of the SWI/SNF complexes in VSMC and cardiovascular diseases (CVD), integrating these discoveries into the current landscape of epigenetic and transcriptional regulation in VSMC. These novel discoveries shed light on our understanding of VSMC biology and pave the way for developing innovative therapeutic strategies in CVD treatment.


Assuntos
Doenças Cardiovasculares , Músculo Liso Vascular , Humanos , Doenças Cardiovasculares/genética , Cromatina , Epigenômica , Sacarose
3.
Arterioscler Thromb Vasc Biol ; 43(12): 2285-2297, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823268

RESUMO

BACKGROUND: Although single-cell RNA-sequencing is commonly applied to dissect the heterogeneity in human tissues, it involves the preparation of single-cell suspensions via cell dissociation, causing loss of spatial information. In this study, we employed high-resolution single-cell transcriptome imaging to reveal rare smooth muscle cell (SMC) types in human thoracic aortic aneurysm (TAA) tissue samples. METHODS: Single-molecule spatial distribution of transcripts from 140 genes was analyzed in fresh-frozen human TAA samples with region and sex-matched controls. In vitro studies and tissue staining were performed to examine human CART prepropeptide (CARTPT) regulation and function. RESULTS: We captured thousands of cells per sample including a spatially distinct CARTPT-expressing SMC subtype enriched in male TAA samples. Immunoassays confirmed human CART (cocaine- and amphetamine-regulated transcript) protein enrichment in male TAA tissue and truncated CARTPT secretion into cell culture medium. Oxidized low-density lipoprotein, a cardiovascular risk factor, induced CARTPT expression, whereas CARTPT overexpression in human aortic SMCs increased the expression of key osteochondrogenic transcription factors and reduced contractile gene expression. Recombinant human CART treatment of human SMCs further confirmed this phenotype. Alizarin red staining revealed calcium deposition in male TAA samples showing similar localization with human CART staining. CONCLUSIONS: Here, we demonstrate the feasibility of single-molecule imaging in uncovering rare SMC subtypes in the diseased human aorta, a difficult tissue to dissociate. We identified a spatially distinct CARTPT-expressing SMC subtype enriched in male human TAA samples. Our functional studies suggest that human CART promotes osteochondrogenic switch of aortic SMCs, potentially leading to medial calcification of the thoracic aorta.


Assuntos
Aneurisma da Aorta Torácica , Calcinose , Humanos , Masculino , Transcriptoma , Aneurisma da Aorta Torácica/metabolismo , Aorta Torácica/metabolismo , Perfilação da Expressão Gênica/métodos , Calcinose/metabolismo , Miócitos de Músculo Liso/metabolismo
4.
Cell Rep ; 42(10): 113171, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37768825

RESUMO

Atherosclerosis, a leading health concern, stems from the dynamic involvement of immune cells in vascular plaques. Despite its significance, the interplay between chromatin remodeling and transcriptional regulation in plaque macrophages is understudied. We discovered the reduced expression of Baf60a, a component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex, in macrophages from advanced plaques. Myeloid-specific Baf60a deletion compromised mitochondrial integrity and heightened adhesion, apoptosis, and plaque development. BAF60a preserves mitochondrial energy homeostasis under pro-atherogenic stimuli by retaining nuclear respiratory factor 1 (NRF1) accessibility at critical genes. Overexpression of BAF60a rescued mitochondrial dysfunction in an NRF1-dependent manner. This study illuminates the BAF60a-NRF1 axis as a mitochondrial function modulator in atherosclerosis, proposing the rejuvenation of perturbed chromatin remodeling machinery as a potential therapeutic target.


Assuntos
Aterosclerose , Fatores de Transcrição , Humanos , Aterosclerose/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Homeostase , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37289544

RESUMO

Specific and efficient smooth muscle cell-targeted (SMC-targeted) gene deletion is typically achieved by pairing SMMHC-CreERT2-Tg mice with mice carrying the loxP-flanked gene. However, the transgene, CreERT2, is not controlled by the endogenous Myh11 gene promoter, and the codon-modified iCreERT2 exhibits significant tamoxifen-independent leakage. Furthermore, because the Cre-bearing bacterial artificial chromosome (BAC) is inserted onto the Y chromosome, the SMMHC-CreERT2-Tg mice strain can only exhibit gene deletions in male mice. Additionally, there is a lack of Myh11-driven constitutive Cre mice when tamoxifen usage is a concern. We used CRISPR/Cas9-mediated homologous recombination between a donor vector carrying the CreNLSP2A or CreERT2-P2A sequence and homologous arm surrounding the translation start site of the Myh11 gene to generate Cre-knockin mice. The P2A sequence enables the simultaneous translation of Cre and endogenous proteins. Using reporter mice, we assessed Cre-mediated recombination efficiency, specificity, tamoxifen-dependent controllability, and functionality in both sexes. Both constitutive (Myh11-CreNLSP2A) and inducible (Myh11-CreERT2-P2A) Cre mice demonstrated efficient, SMC-specific, sex-independent Cre recombinase activity without confounding endogenous gene expression. Combined with recently generated BAC transgenic Myh11-CreERT2-RAD mice and the Itga8-CreERT2 mouse models, our models will help expand the research toolbox, facilitating unbiased and comprehensive research in SMCs and SMC-dependent cardiovascular diseases.


Assuntos
Miócitos de Músculo Liso , Tamoxifeno , Feminino , Camundongos , Masculino , Animais , Deleção de Genes , Camundongos Transgênicos , Tamoxifeno/farmacologia
6.
ACS Appl Bio Mater ; 6(5): 2003-2013, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129536

RESUMO

Photothermal therapy (PTT) is an effective therapeutic method against multidrug-resistant bacteria. The heating temperature is of great significance to completely eliminate bacteria but not damage surrounding healthy tissue. To meet the need for chronic wound management, a pH and temperature dual-responsive copper-gold nanoassembly (sCuAu NAs) was constructed by cross-linking the CuAu nanoparticles (CuAu NPs) with small molecules involved in the Edman degradation reaction. At room temperature, the sCuAu NAs could quickly heat up to eliminate the biofilm upon laser irradiation due to the surface plasmon resonance coupling effect. On arriving at the degradation temperature of around 50 °C, the sCuAu NAs are disassembled into CuAu NPs in the wound infection site, which not only prevents overheating but also promotes deep penetration and accelerates copper-ion release to remove residual bacteria and promote wound healing. This study not only provides an effective treatment that can simultaneously alleviate wound infection and accelerate wound healing but also brings up an idea on the development and application of temperature self-regulated photothermal agents in various diseases.


Assuntos
Nanopartículas , Terapia Fototérmica , Cobre/farmacologia , Cobre/química , Temperatura , Cicatrização
7.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37079380

RESUMO

Abdominal aortic aneurysm (AAA) is usually asymptomatic until life-threatening complications occur, predominantly involving aortic rupture. Currently, no drug-based treatments are available, primarily due to limited understanding of AAA pathogenesis. The transcriptional regulator PR domain-containing protein 16 (PRDM16) is highly expressed in the aorta, but its functions in the aorta are largely unknown. By RNA-seq analysis, we found that vascular smooth muscle cell-specific (VSMC-specific) Prdm16-knockout (Prdm16SMKO) mice already showed extensive changes in the expression of genes associated with extracellular matrix (ECM) remodeling and inflammation in the abdominal aorta under normal housing conditions without any pathological stimuli. Human AAA lesions displayed lower PRDM16 expression. Periadventitial elastase application to the suprarenal region of the abdominal aorta aggravated AAA formation in Prdm16SMKO mice. During AAA development, VSMCs undergo apoptosis because of both intrinsic and environmental changes, including inflammation and ECM remodeling. Prdm16 deficiency promoted inflammation and apoptosis in VSMCs. A disintegrin and metalloproteinase 12 (ADAM12) is a gelatinase that can degrade various ECMs. We found that ADAM12 is a target of transcriptional repression by PRDM16. Adam12 knockdown reversed VSMC apoptosis induced by Prdm16 deficiency. Our study demonstrated that PRDM16 deficiency in VSMCs promoted ADAM12 expression and aggravates AAA formation, which may provide potential targets for AAA treatment.


Assuntos
Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Camundongos , Animais , Humanos , Músculo Liso Vascular/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Inflamação/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
8.
J Control Release ; 357: 40-51, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948418

RESUMO

Cancer immunotherapy is an emerging cancer therapeutic method by activating the patient's immune system but suffers from low immunogenicity at tumor sites. Fever-like heat is known to modulate an immune-friendly tumor microenvironment. Here, temperature-responsive iron oxide nanoassemblies (IONAs) are developed by crosslinking iron oxide nanoparticles (IONPs) and loaded with JQ1 (JQ1/IONAs), an immuno-modulating agent known to down-regulate PD-L1. In the presence of an alternating magnetic field (AMF), the IONAs demonstrate a much more effective magnetic thermal effect than IONPs and are responsively disassembled to prevent overheating. Compared with IONPs + AMF (∼ 41 °C) and unresponsive nanoassemblies (uIONAs) + AMF (∼ 50 °C), the IONAs + AMF with a temperature heated around 45 °C show a much better immune response and anti-tumor effect. Further combining the mild thermal therapy with controlled release of JQ1, the JQ1/IONAs + AMF completely eradicate the primary tumors and trigger a strong immune effect to inhibit the distant tumor growth as well as prevent tumor recurrence and metastasis. Our JQ1/IONAs not only provide a magnetic thermal agent with effective heating and temperature self-regulation ability but also serve as a heat-triggered JQ1 carrier to spontaneously combine mild magnetic thermal therapy with immune checkpoint blockade therapy.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Hipertermia Induzida/métodos , Temperatura Alta , Campos Magnéticos , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
9.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066968

RESUMO

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. BAF60c, a unique subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, is critical for cardiac and skeletal myogenesis, yet little is known about its function in the vasculature and, specifically, in AAA pathogenesis. Here, we found that BAF60c was downregulated in human and mouse AAA tissues, with primary staining to vascular smooth muscle cells (VSMCs), confirmed by single-cell RNA-sequencing. In vivo studies revealed that VSMC-specific knockout of Baf60c significantly aggravated both angiotensin II- (Ang II-) and elastase-induced AAA formation in mice, with a significant increase in elastin degradation, inflammatory cell infiltration, VSMC phenotypic switch, and apoptosis. In vitro studies showed that BAF60c knockdown in VSMCs resulted in loss of contractile phenotype, increased VSMC inflammation, and apoptosis. Mechanistically, we demonstrated that BAF60c preserved VSMC contractile phenotype by strengthening serum response factor (SRF) association with its coactivator P300 and the SWI/SNF complex and suppressing VSMC inflammation by promoting a repressive chromatin state of NF-κB target genes as well as preventing VSMC apoptosis through transcriptional activation of KLF5-dependent B cell lymphoma 2 (BCL2) expression. Our identification of the essential role of BAF60c in preserving VSMC homeostasis expands its therapeutic potential in preventing and treating AAA.


Assuntos
Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Animais , Humanos , Camundongos , Angiotensina II/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Modelos Animais de Doenças , Epigênese Genética , Homeostase , Inflamação/patologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
10.
J Vis Exp ; (180)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35225256

RESUMO

Abdominal aortic aneurysm (AAA), although primarily asymptomatic, is potentially life-threatening as the rupture of AAA usually has a devastating outcome. Currently, there are several distinct experimental models of AAA, each emphasizing a different aspect in the pathogenesis of AAA. The elastase-induced AAA model is the second most used rodent AAA model. This model involves direct infusion or application of porcine pancreatic elastase (PPE) to the infrarenal segment of the aorta. Due to technical challenges, most elastase-induced AAA model nowadays is performed with the external application rather than an intraluminal infusion of PPE. The infiltration of elastase will cause degradation of elastic lamellae in the medial layers, resulting in the loss of aortic wall integrity and subsequent dilation of the abdominal aorta. However, one disadvantage of the elastase-induced AAA model is the inevitable variation of how the surgery is performed. Specifically, the surgical technique of isolating the infrarenal segment of the aorta, the material used for aorta wrapping and PPE incubation, the enzymatic activity of PPE, and the time duration of PPE application can all be important determinants that affect the eventual AAA formation rate and aneurysm diameter. Notably, the difference in these factors from different studies on AAA can lead to reproducibility issues. This article describes a detailed surgical process of the elastase-induced AAA model through direct application of PPE to the adventitia of the infrarenal abdominal aorta in the mouse. Following this procedure, a stable AAA formation rate of around 80% in male and female mice is achievable. The consistency and reproducibility of AAA studies using an elastase-induced AAA model can be significantly enhanced by establishing a standard surgical procedure.


Assuntos
Aneurisma da Aorta Abdominal , Elastase Pancreática , Animais , Aorta Abdominal/patologia , Aorta Abdominal/cirurgia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática/metabolismo , Reprodutibilidade dos Testes , Suínos
11.
Thromb Haemost ; 122(5): 777-788, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34428834

RESUMO

Krüppel-like factors (KLFs) play essential roles in multiple biological functions, including maintaining vascular homeostasis. KLF11, a causative gene for maturity-onset diabetes of the young type 7, inhibits endothelial activation and protects against stroke. However, the role of KLF11 in venous thrombosis remains to be explored. Utilizing stasis-induced murine deep vein thrombosis (DVT) model and cultured endothelial cells (ECs), we identified an increase of KLF11 expression under prothrombotic conditions both in vivo and in vitro. The expression change of thrombosis-related genes was determined by utilizing gain- and loss-of-function approaches to alter KLF11 expression in ECs. Among these genes, KLF11 significantly downregulated tumor necrosis factor-α (TNF-α)-induced tissue factor (TF) gene transcription. Using reporter gene assay, chromatin immunoprecipitation assay, and co-immunoprecipitation, we revealed that KLF11 could reduce TNF-α-induced binding of early growth response 1 (EGR1) to TF gene promoter in ECs. In addition, we demonstrated that conventional Klf11 knockout mice were more susceptible to developing stasis-induced DVT. These results suggest that under prothrombotic conditions, KLF11 downregulates TF gene transcription via inhibition of EGR1 in ECs. In conclusion, KLF11 protects against venous thrombosis, constituting a potential molecular target for treating thrombosis.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Repressoras , Trombose , Trombose Venosa , Animais , Proteínas Reguladoras de Apoptose/genética , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Tromboplastina/genética , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa , Trombose Venosa/genética , Trombose Venosa/prevenção & controle
12.
J Am Chem Soc ; 143(38): 15812-15823, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34473493

RESUMO

Iron-based nanoparticles have attracted much attention because of their ability to induce ferroptosis via a catalyzing Fenton reaction and to further potentiate immunotherapy. However, current iron-based nanoparticles need to be used in cooperation with other treatments or be applied in a high dose for effective therapy because of their low reactive oxygen species production efficacy. Here, we synthesized ultrasmall single-crystal Fe nanoparticles (bcc-USINPs) that stayed stable in a normal physiological environment but were highly active in a tumor microenvironment because of the selective acidic etching of an Fe3O4 shell and the exposure of the Fe(0) core. The bcc-USINPs could efficiently induce tumor cell ferroptosis and immunogenetic cell death at a very low concentration. Intravenous injection of iRGD-bcc-USINPs at three doses of 1 mg/kg could effectively suppress the tumor growth, promote the maturation of dendritic cells, and trigger the adaptive T cell response. Combined with programmed death-ligand 1 (PD-L1) immune checkpoint blockade immunotherapy, the iRGD-bcc-USINP-mediated ferroptosis therapy greatly potentiated the immune response and developed strong immune memory. In addition, these USINPs were quickly renal excreted with no side effects in normal tissues. These iRGD-bcc-USINPs provide a simple, safe, effective, and selectively tumor-responsive Fe(0) delivery system for ferroptosis-based immunotherapy.


Assuntos
Antineoplásicos/química , Ferroptose/efeitos dos fármacos , Ferro/química , Nanopartículas Metálicas/química , Animais , Antineoplásicos/farmacocinética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Imunoterapia , Ferro/farmacocinética , Rim , Camundongos , Terapia de Alvo Molecular , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato , Microambiente Tumoral
13.
Cell Rep ; 36(4): 109420, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320345

RESUMO

Dysregulated glycine metabolism is emerging as a common denominator in cardiometabolic diseases, but its contribution to atherosclerosis remains unclear. In this study, we demonstrate impaired glycine-oxalate metabolism through alanine-glyoxylate aminotransferase (AGXT) in atherosclerosis. As found in patients with atherosclerosis, the glycine/oxalate ratio is decreased in atherosclerotic mice concomitant with suppression of AGXT. Agxt deletion in apolipoprotein E-deficient (Apoe-/-) mice decreases the glycine/oxalate ratio and increases atherosclerosis with induction of hepatic pro-atherogenic pathways, predominantly cytokine/chemokine signaling and dysregulated redox homeostasis. Consistently, circulating and aortic C-C motif chemokine ligand 5 (CCL5) and superoxide in lesional macrophages are increased. Similar findings are observed following dietary oxalate overload in Apoe-/- mice. In macrophages, oxalate induces mitochondrial dysfunction and superoxide accumulation, leading to increased CCL5. Conversely, AGXT overexpression in Apoe-/- mice increases the glycine/oxalate ratio and decreases aortic superoxide, CCL5, and atherosclerosis. Our findings uncover dysregulated oxalate metabolism via suppressed AGXT as a driver and therapeutic target in atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Terapia de Alvo Molecular , Oxalatos/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Quimiocina CCL5/metabolismo , Colesterol/metabolismo , Dependovirus/metabolismo , Feminino , Glicina/metabolismo , Homeostase , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Superóxidos/metabolismo , Transaminases/deficiência , Transaminases/metabolismo
14.
Circulation ; 144(15): 1244-1261, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34315224

RESUMO

BACKGROUND: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. METHODS: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury models, we identified nidogen-2, a basement membrane glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. RESULTS: We collected a VSMC phenotype-related gene dataset by using Gene Ontology annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMC phenotype-related gene dataset revealed the candidate gene nidogen-2, a basement membrane glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro, and compared with wild-type mice, nidogen-2-/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, coimmunoprecipitation assays, and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2-/- mice compared with wild-type mice. CONCLUSIONS: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo. Nidogen-2 is required for Jagged1-Notch3 signaling.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteína Jagged-1/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Receptor Notch3/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Neointima/patologia , Fenótipo
15.
Front Cell Dev Biol ; 9: 689469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095155

RESUMO

Atherosclerosis is the leading cause of cardiovascular diseases, which is also the primary cause of mortality among diabetic patients. Endothelial cell (EC) dysfunction is a critical early step in the development of atherosclerosis and aggravated in the presence of concurrent diabetes. Although the heterogeneity of the organ-specific ECs has been systematically analyzed at the single-cell level in healthy conditions, their transcriptomic changes in diabetic atherosclerosis remain largely unexplored. Here, we carried out a single-cell RNA sequencing (scRNA-seq) study using EC-enriched single cells from mouse heart and aorta after 12 weeks feeding of a standard chow or a diabetogenic high-fat diet with cholesterol. We identified eight EC clusters, three of which expressed mesenchymal markers, indicative of an endothelial-to-mesenchymal transition (EndMT). Analyses of the marker genes, pathways, and biological functions revealed that ECs are highly heterogeneous and plastic both in normal and atherosclerotic conditions. The metabolic transcriptomic analysis further confirmed that EndMT-derived fibroblast-like cells are prominent in atherosclerosis, with diminished fatty acid oxidation and enhanced biological functions, including regulation of extracellular-matrix organization and apoptosis. In summary, our data characterized the phenotypic and metabolic heterogeneity of ECs in diabetes-associated atherogenesis at the single-cell level and paves the way for a deeper understanding of endothelial cell biology and EC-related cardiovascular diseases.

16.
Acta Biomater ; 129: 84-95, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34010690

RESUMO

Hydrogels have drawn considerable attention in the field of drug delivery, yet their poor mechanical strength and uncontrollable drug release behavior have hindered further applications in clinical practice. Taking utility of metal-ligand coordination for structurally reinforcing the hydrogel network, we report design and synthesis of magnetic nanocomposite hydrogels (HA-DOPA·MNPs) that are crosslinked by DOPA-Fe(III) coordination existing between dopamine-conjugated hyaluronan (HA-DOPA) and iron oxide magnetic nanoparticles (MNPs). The MNPs in the nanocomposite hydrogel not only serve as structural crosslinkers, but also facilitate magnetic hyperthermia and on-demand release of doxorubicin (DOX) in HA-DOPA·MNPs/DOX hydrogels, for release rate of DOX accelerates when external alternating magnetic field (AMF) is ON, and it restores to a slow pace when AMF is OFF. Importantly, HA-DOPA·MNPs/DOX hydrogel shows a longer retention time than HA-DOPA/DOX gel or DOX solution in vivo. Further experiments confirm the efficacious anticancer potency of HA-DOPA·MNPs/DOX in vitro and in vivo, that is mediated by a combination therapy consisting of chemotherapy (DOX) and hyperthermia (MNPs). In contrast, single-modality treatment (DOX or hyperthermia only) fails to show an equivalent efficacy at the same dose. STATEMENT OF SIGNIFICANCE: This study reports the design of a class of magnetic nanocomposite hydrogel (HA-DOPA·MNPs) that was structurally reinforced by DOPA-Fe (III) coordination between HA-DOPA and iron oxide MNPs. On one hand, MNPs served as crosslinking centers for structurally reinforcing the nanocomposite hydrogel; on the other hand, MNPs facilitated temperature rise under an external MNPs, which prompted on-demand drug release as well as a combination therapy. Comparing to single modality treatment (chemotherapy or hyperthermia alone), the HA-DOPA·MNPs/DOX formulation with AMF demonstrated better efficacy against proliferation of tumor cells (A375) both in vitro and in vivo. We believe that design of HA-DOPA·MNPs/DOX hydrogel in this report provides a general approach to fabricate structurally-reinforced nanocomposite hydrogels for on-demand drug delivery and efficacious combination therapy.


Assuntos
Compostos Férricos , Hipertermia Induzida , Catecóis , Doxorrubicina/farmacologia , Hidrogéis , Nanogéis
17.
Cell Res ; 31(7): 773-790, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33510386

RESUMO

Compelling evidence has revealed that biased activation of G protein-coupled receptor (GPCR) signaling, including angiotensin II (AngII) receptor type 1 (AT1) signaling, plays pivotal roles in vascular homeostasis and injury, but whether a clinically relevant endogenous biased antagonism of AT1 signaling exists under physiological and pathophysiological conditions has not been clearly elucidated. Here, we show that an extracellular matrix protein, cartilage oligomeric matrix protein (COMP), acts as an endogenous allosteric biased modulator of the AT1 receptor and its deficiency is clinically associated with abdominal aortic aneurysm (AAA) development. COMP directly interacts with the extracellular N-terminus of the AT1 via its EGF domain and inhibits AT1-ß-arrestin-2 signaling, but not Gq or Gi signaling, in a selective manner through allosteric regulation of AT1 intracellular conformational states. COMP deficiency results in activation of AT1a-ß-arrestin-2 signaling and subsequent exclusive AAA formation in response to AngII infusion. AAAs in COMP-/- or ApoE-/- mice are rescued by AT1a or ß-arrestin-2 deficiency, or the application of a peptidomimetic mimicking the AT1-binding motif of COMP. Explorations of the endogenous biased antagonism of AT1 receptor or other GPCRs may reveal novel therapeutic strategies for cardiovascular diseases.


Assuntos
Receptor Tipo 1 de Angiotensina , Lesões do Sistema Vascular , Animais , Proteína de Matriz Oligomérica de Cartilagem , Células HEK293 , Humanos , Camundongos , Receptor Tipo 1 de Angiotensina/metabolismo , beta-Arrestina 2 , beta-Arrestinas/metabolismo
18.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33507881

RESUMO

Abdominal aortic aneurysm (AAA) is a life-threatening degenerative vascular disease. Endothelial cell (EC) dysfunction is implicated in AAA. Our group recently demonstrated that Krüppel-like factor 11 (KLF11) plays an essential role in maintaining vascular homeostasis, at least partially through inhibition of EC inflammatory activation. However, the functions of endothelial KLF11 in AAA remain unknown. Here we found that endothelial KLF11 expression was reduced in the ECs from human aneurysms and was time dependently decreased in the aneurysmal endothelium from both elastase- and Pcsk9/AngII-induced AAA mouse models. KLF11 deficiency in ECs markedly aggravated AAA formation, whereas EC-selective KLF11 overexpression markedly inhibited AAA formation. Mechanistically, KLF11 not only inhibited the EC inflammatory response but also diminished MMP9 expression and activity and reduced NADPH oxidase 2-mediated production of reactive oxygen species in ECs. In addition, KLF11-deficient ECs induced smooth muscle cell dedifferentiation and apoptosis. Overall, we established endothelial KLF11 as a potentially novel factor protecting against AAA and a potential target for intervention in aortic aneurysms.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Proteínas Reguladoras de Apoptose/fisiologia , Células Endoteliais , Proteínas Repressoras/fisiologia , Animais , Apoptose , Desdiferenciação Celular , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Cardiovasc Drugs Ther ; 35(5): 939-951, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32671602

RESUMO

PURPOSE: Abdominal aortic aneurysm (AAA) is one of the leading causes of death in the developed world and is currently undertreated due to the complicated nature of the disease. Herein, we aimed to address the therapeutic potential of a novel class of pleiotropic mediators, specifically a new drug candidate, nitro-oleic acid (NO2-OA), on AAA, in a well-characterized murine AAA model. METHODS: We generated AAA using a mouse model combining AAV.PCSK9-D377Y induced hypercholesterolemia with angiotensin II given by chronic infusion. Vehicle control (PEG-400), oleic acid (OA), or NO2-OA were subcutaneously delivered to mice using an osmotic minipump. We characterized the effects of NO2-OA on pathophysiological responses and dissected the underlying molecular mechanisms through various in vitro and ex vivo strategies. RESULTS: Subcutaneous administration of NO2-OA significantly decreased the AAA incidence (8/28 mice) and supra-renal aorta diameters compared to mice infused with either PEG-400 (13/19, p = 0.0117) or OA (16/23, p = 0.0078). In parallel, the infusion of NO2-OA in the AAA model drastically decreased extracellular matrix degradation, inflammatory cytokine levels, and leucocyte/macrophage infiltration in the vasculature. Administration of NO2-OA reduced inflammation, cytokine secretion, and cell migration triggered by various biological stimuli in primary and macrophage cell lines partially through activation of the peroxisome proliferator-activated receptor-gamma (PPARγ). Moreover, the protective effect of NO2-OA relies on the inhibition of macrophage prostaglandin E2 (PGE2)-induced PGE2 receptor 4 (EP4) cAMP signaling, known to participate in the development of AAA. CONCLUSION: Administration of NO2-OA protects against AAA formation and multifactorial macrophage activation. With NO2-OA currently undergoing FDA approved phase II clinical trials, these findings may expedite the use of this nitro-fatty acid for AAA therapy.


Assuntos
Aneurisma da Aorta Abdominal/fisiopatologia , Ativação de Macrófagos/efeitos dos fármacos , Nitrocompostos/farmacologia , Ácidos Oleicos/farmacologia , Angiotensina II/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
20.
Cardiovasc Res ; 117(5): 1402-1416, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32678909

RESUMO

AIMS: The artery contains numerous cell types which contribute to multiple vascular diseases. However, the heterogeneity and cellular responses of these vascular cells during abdominal aortic aneurysm (AAA) progression have not been well characterized. METHODS AND RESULTS: Single-cell RNA sequencing was performed on the infrarenal abdominal aortas (IAAs) from C57BL/6J mice at Days 7 and 14 post-sham or peri-adventitial elastase-induced AAA. Unbiased clustering analysis of the transcriptional profiles from >4500 aortic cells identified 17 clusters representing nine-cell lineages, encompassing vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, immune cells (macrophages, T cells, B cells, and dendritic cells), and two types of rare cells, including neural cells and erythrocyte cells. Seurat clustering analysis identified four smooth muscle cell (SMC) subpopulations and five monocyte/macrophage subpopulations, with distinct transcriptional profiles. During AAA progression, three major SMC subpopulations were proportionally decreased, whereas the small subpopulation was increased, accompanied with down-regulation of SMC contractile markers and up-regulation of pro-inflammatory genes. Another AAA-associated cellular response is immune cell expansion, particularly monocytes/macrophages. Elastase exposure induced significant expansion and activation of aortic resident macrophages, blood-derived monocytes and inflammatory macrophages. We also identified increased blood-derived reparative macrophages expressing anti-inflammatory cytokines suggesting that resolution of inflammation and vascular repair also persist during AAA progression. CONCLUSION: Our data identify AAA disease-relevant transcriptional signatures of vascular cells in the IAA. Furthermore, we characterize the heterogeneity and cellular responses of VSMCs and monocytes/macrophages during AAA progression, which provide insights into their function and the regulation of AAA onset and progression.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Linhagem da Célula , Perfilação da Expressão Gênica , RNA-Seq , Análise de Célula Única , Transcriptoma , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Análise por Conglomerados , Modelos Animais de Doenças , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Elastase Pancreática , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...