Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180(8): 1132-1147, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36479683

RESUMO

BACKGROUND AND PURPOSE: Intravenous infusion of chemotherapy drugs can cause severe chemotherapy-induced phlebitis (CIP) in patients. However, the underlying mechanism of CIP development remains unclear. EXPERIMENTAL APPROACH: RNA-sequencing analysis was used to identify potential disease targets in CIP. Guanylate binding protein-5 (GBP5) genetic deletion approaches also were used to investigate the role of GBP5 in NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in lipopolysaccharide (LPS) primed murine bone-marrow-derived macrophages (BMDMs) induced by vinorelbine (VIN) in vitro and in mouse models of VIN-induced CIP in vivo. The anti-CIP effect of aescin was evaluated, both in vivo and in vivo. KEY RESULTS: Here, we show that the expression of GBP5 was upregulated in human peripheral blood mononuclear cells from CIP patients. Genetic ablation of GBP5 in murine macrophages significantly alleviated VIN-induced CIP in the experimental mouse model. Mechanistically, GBP5 contributed to the inflammatory responses through activating NLRP3 inflammasome and driving the production of the inflammatory cytokine IL-1ß. Moreover, aescin, a mixture of triterpene saponins extracted from horse chestnut seed, can alleviate CIP by inhibiting the GBP5/NLRP3 axis. CONCLUSION AND IMPLICATIONS: These findings suggest that GBP5 is an important regulator of NLRP3 inflammasome in CIP mouse model. Our work further reveals that aescin may serve as a promising candidate in the clinical treatment of CIP.


Assuntos
Antineoplásicos , Flebite , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Escina , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-1beta/metabolismo , Proteínas de Ligação ao GTP/metabolismo
2.
Cell Immunol ; 383: 104651, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493524

RESUMO

Lipopolysaccharides (LPS) is one of the most potent pathogen-associated signals for the immune system of vertebrates. In addition to the canonical pathway of LPS detection mediated by toll-like receptor 4 (TLR4) signaling pathway, TRP channel-mediated pathways endow sensory neurons and epithelial cells with the ability to detect and react to bacterial endotoxins. Previous work revealed that LPS triggers TRPV4-dependent calcium influx in urothelial cells (UCs) and mouse tracheobronchial epithelial cells (mTEC). In marked contrast, here we show that most subtypes of LPS could not directly activate TRPV4 channel. Although LPS from Salmonella enterica serotype Minnesota evoked a [Ca2+]i response in freshly isolated human bronchial epithelial cells (ECs), freshly isolated mouse ear skin single-cell suspensions, or HEK293T cells transiently transfected with mTRPV4, this activation occurred in a TRPV4-independent manner. Additionally, LPS from either E. coli strains or Salmonella enterica serotype Minnesota did not evoke significant difference in inflammation and pain hyperalgesia between wild type and TRPV4 deficient mice. In summary, our results demonstrate that in vitro and in vivo effects induced by LPS are independent of TRPV4, thus providing a clarity to the questioned role of LPS in TRPV4 activation.


Assuntos
Sinalização do Cálcio , Lipopolissacarídeos , Canais de Cátion TRPV , Animais , Humanos , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Escherichia coli/patogenicidade , Células HEK293 , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , Salmonella enterica/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...