Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(5): 2323-2334, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38267389

RESUMO

The heavy use of nitrogen fertilizer in intensive agricultural areas often leads to nitrate accumulation in subsurface soil and nitrate contamination in groundwater, which poses a serious risk to public health. Denitrifying microorganisms in the subsoil convert nitrate to gaseous forms of nitrogen, thereby mitigating the leaching of nitrate into groundwater. Here, we investigated denitrifying microorganisms in the deep vadose zone of a typical intensive agricultural area in China through microcosm enrichment, genome-resolved metagenomic analysis, and denitrifying bacteria isolation. A total of 1000 metagenome-assembled genomes (MAGs) were reconstructed, resulting in 98 high-quality, dereplicated MAGs that contained denitrification genes. Among them, 32 MAGs could not be taxonomically classified at the genus or species level, indicating that a broader spectrum of taxonomic groups is involved in subsoil denitrification than previously recognized. A denitrifier isolate library was constructed by using a strategy combining high-throughput and conventional cultivation techniques. Assessment of the denitrification characteristics of both the MAGs and isolates demonstrated the dominance of truncated denitrification. Functional screening revealed the highest denitrification activity in two complete denitrifiers belonging to the genus Pseudomonas. These findings greatly expand the current knowledge of the composition and function of denitrifying microorganisms in subsoils. The constructed isolate library provided the first pool of subsoil-denitrifying microorganisms that could facilitate the development of microbe-based technologies for nitrate attenuation in groundwater.


Assuntos
Desnitrificação , Nitratos , Nitratos/análise , Bactérias/genética , Metagenoma , Nitrogênio , Metagenômica
2.
Front Microbiol ; 14: 1290825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098655

RESUMO

Introduction: Maize (Zea mays L.)-soybean (Glycine max L.) intercropping has been widely utilized in agricultural production due to its effectiveness in improving crop yield and nutrient use efficiency. However, the responses of maize rhizosphere microbial communities and the plant pathogen relative abundance to maize growth traits in maize-soybean intercropping systems with different chemical nitrogen fertilizer application rates remain unclear. Methods: In this study, a field experiment was conducted, and the bacterial and fungal communities of maize rhizosphere soils in maize-soybean intercropping systems treated with different N fertilization rates were investigated using Illumina NovaSeq sequencing. Maize growth traits, soil physicochemical properties and soil enzyme activities were also examined. Results and discussion: We found that intercropping and N fertilizer treatments strongly influenced soil microbial diversity, structure and function. The PLSPM (partial least squares path modeling) confirmed that soil nutrients directly positively affected maize biomass and that intercropping practices indirectly positively affected maize biomass via soil nutrients, especially NH4+-N. Intercropping agronomic approaches also improved maize growth traits by reducing the plant pathogen abundance, and the relative abundance of the plant pathogen Trichothecium roseum significantly decreased with intercropping treatments compared to monocropping treatments. These results confirmed the benefits of maize-soybean intercropping treatments for agricultural production.

3.
Environ Microbiol ; 25(11): 2636-2640, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37544653

RESUMO

Nitrification, a key step in soil nitrogen cycling, is a biologically mediated process crucial to the ecological environment. However, how nitrifiers drive nitrification under different soil properties and climatic factors at large spatial scales is poorly understood. Here, using metagenomic sequencing and network-based approaches, we identified key nitrifying species of upland agricultural soils in northern China, which spans a wide range of climates and geographic distances. We found that potential nitrification rates (PNRs) varied in different soils and were positively correlated with soil pH (5.42-8.46) and mean annual temperature (MAT) and negatively correlated with the C/N ratio. Network analysis revealed that one module (module 3) was significantly correlated with PNR. In this module, 16 dominant nodes were associated with AOB Nitrosomonas and most nodes were significantly correlated with environmental factors, suggesting that abiotic conditions are important for determining the assembly of these key nitrifiers. Our study advanced the understanding of the key nitrifying populations and their environmental drivers in upland agricultural soil across different soil and climate types.


Assuntos
Nitrificação , Solo , Solo/química , Archaea , Oxirredução , Microbiologia do Solo , Amônia , Nitrogênio/química
4.
Micromachines (Basel) ; 14(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421090

RESUMO

In recent years, the active-matrix organic light-emitting diode (AMOLED) displays have been greatly required. A voltage compensation pixel circuit based on an amorphous indium gallium zinc oxide thin-film transistor is presented for AMOLED displays. The circuit is composed of five transistors-two capacitors (5T2C) in combination with an OLED. In the circuit, the threshold voltages of both the transistor and the OLED are extracted simultaneously in the threshold voltage extraction stage, and the mobility-related discharge voltage is generated in the data input stage. The circuit not only can compensate the electrical characteristics variation, i.e., the threshold voltage variation and mobility variation, but also can compensate the OLED degradation. Furthermore, the circuit can prevent the OLED flicker, and can achieve the wide data voltage range. The circuit simulation results show that the OLED current error rates (CERs) are lower than 3.89% when the transistor's threshold voltage variation is ±0.5V, lower than 3.49% when the mobility variation is ±30%.

5.
Microbes Environ ; 37(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965098

RESUMO

Ammonia-oxidizing archaea (AOA), key players in agricultural upland soil nitrification, convert soil ammonium to nitrite. The microbial oxidation of ammonia to nitrite is an important part of the global biogeochemical nitrogen cycle. In the present study, we recovered six novel AOA metagenome-assembled genomes (MAGs) containing genes for carbon (C) fixation and nitrogen (N) metabolism by using a deep shotgun metagenomic sequencing strategy. We also found that these AOA MAGs possessed cobalamin synthesis genes, suggesting that AOA are vitamin suppliers in agricultural upland soil. Collectively, the present results deepen our understanding of the metabolic potential and phylogeny of AOA in agroecosystems.


Assuntos
Amônia , Archaea , Amônia/metabolismo , Bactérias , Metagenoma , Nitritos/metabolismo , Oxirredução , Solo , Microbiologia do Solo
6.
J Cancer ; 13(3): 793-799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154448

RESUMO

Background: The level of cervical cancer screening in underdeveloped countries is far behind that of developed countries mostly because current cervical cancer screening methods are difficult to implement in underdeveloped countries. The use of non-invasive, repeatable, and low-cost ultrasound needs to be accessed. Methods: The Canadian Sonix TOUCH ultrasound system and transvaginal ultrasound probe were used to record ultrasound radio frequency (RF) signals from cervical tissues of 69 patients with cervical cancer and 37 healthy women. The self-compiled RF time series signal analysis software was used to extract 3 different dimensions of parameters of the region of interest (ROI), including time domain, frequency domain, and fractal dimension (FD). Fourteen spectrum characteristic parameters were extracted, of which structure function method FD (SFD) and Higuchi FD belonged to FD parameters; slope, intercept, midbandfit, S1, S2, S3, and S4 were frequency domain parameters; and fuzzy entropy, kurtosis, peak, cross zero count, and cross zero standard deviation (Std) were time domain parameters. Results: The average values of the five time-domain characteristic parameters of cervical cancer tissues were smaller than those of normal cervical tissues (fuzzy entropy: 1.70±0.29 vs. 1.83±0.20; kurtosis: 0.347±0.03 vs. 0.350±0.02; peak: 1989.9±166.8 vs. 2024.69±187.5; cross zero count: 3.77±0.31 vs. 3.81±0.29; cross zero Std: 1.26±0.17 vs. 1.33±0.14), although the differences were not statistically significant (P = 0.130, 0.326, 0.618, 0.442, and 0.204, respectively). The average values ​​of the two FD characteristic parameters and the seven frequency domain characteristic parameters of cervical cancer tissues were larger than those of normal tissues (SFD: 1.84±0.28 vs. 1.46±0.39; Higuchi FD: 1.71±0.30 vs. 1.28±0.30; slope: -0.32±0.08 vs. -0.26±0.05; intercept: 0.48±0.02 vs. 0.46±0.02; midbandfit: 0.35±0.03 vs. 0.33±0.03; S1: 15.66±1.01 vs. 13.57±1.69; S2: 10.12±0.69 vs. 9.32±1.27; S3: 9.44±1.12 vs. 8.66±1.09; S4: 7.67±1.01 vs. 6.43±0.65), and the differences were statistically significant (P < 0.05). No effective parameters were found to identify cervical squamous cell carcinoma tissues with different levels of differentiation (P > 0.05). Conclusion: Quantitative analysis of RF time series signals based on ultrasound RF flow is expected to become a simple and non-invasive imaging method for cervical cancer diagnosis. However, whether it can be applied to the identification of early small cervical cancer lesions remains to be determined.

7.
Microorganisms ; 8(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050658

RESUMO

Soil salinity is one of the most important abiotic stresses limiting plant growth and productivity. The breeding of salt-tolerant wheat cultivars has substantially relieved the adverse effects of salt stress. Complementing these cultivars with growth-promoting microbes has the potential to stimulate and further enhance their salt tolerance. In this study, two fungal isolates, Th4 and Th6, and one bacterial isolate, C7, were isolated. The phylogenetic analyses suggested that these isolates were closely related to Trichoderma yunnanense, Trichoderma afroharzianum, and Bacillus licheniformis, respectively. These isolates produced indole-3-acetic acid (IAA) under salt stress (200 mM). The abilities of these isolates to enhance salt tolerance were investigated by seed coatings on salt-sensitive and salt-tolerant wheat cultivars. Salt stress (S), cultivar (C), and microbial treatment (M) significantly affected water use efficiency. The interaction effect of M x S significantly correlated with all photosynthetic parameters investigated. Treatments with Trichoderma isolates enhanced net photosynthesis, water use efficiency and biomass production. Principal component analysis revealed that the influences of microbial isolates on the photosynthetic parameters of the different wheat cultivars differed substantially. This study illustrated that Trichoderma isolates enhance the growth of wheat under salt stress and demonstrated the potential of using these isolates as plant biostimulants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...