Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399180

RESUMO

We have successfully synthesized a series of Bi-doped BaFe2As2 high-quality single crystals for the first time. X-ray diffraction (XRD) patterns show an expansion of lattice parameter c with Bi doping, indicating a negative pressure effect. By investigating the resistivity, a Fermi liquid (FL) to non-Fermi liquid (NFL) crossover is observed from normal state to antiferromagnetic order state, accompanied by three superconducting transitions labeled as SC I, SC II and SC III, which are supposed to be induced by three superconducting realms with various Bi concentrations. Thus, we propose that the NFL behavior is closely related to the presence of superconductivity. The magnetic susceptibility measurements further speculate that the SC I and SC III phases should exhibit filamentary superconductivity while the SC II exhibits a possible bulk superconductivity of TC~7 K.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334534

RESUMO

Diluted magnetic semiconductors (DMSs) with tunable ferromagnetism are among the most promising materials for fabricating spintronic devices. Some DMS systems have sizeable magnetoresistances that can further extend their applications. Here, we report a new DMS Rb(Zn1-x-yLiyMnx)4As3 with a quasi-two-dimensional structure showing sizeable anisotropies in its ferromagnetism and transverse magnetoresistance (MR). With proper charge and spin doping, single crystals of the DMS display Curie temperatures up to 24 K. Analysis of the critical behavior via Arrott plots confirms the long-range ferromagnetic ordering in the Rb(Zn1-x-yLiyMnx)4As3 single crystals. We observed remarkable intrinsic MR effects in the single crystals (i.e., a positive MR of 85% at 0.4 T and a colossal negative MR of -93% at 7 T).

3.
Small ; 20(2): e2305219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658514

RESUMO

Materials with negative thermal expansion (NTE) attract significant research attention owing to their unique physical properties and promising applications. Although ferroelectric phase transitions leading to NTE are widely investigated, information on antiferroelectricity-induced NTE remains limited. In this study, single-crystal and polycrystalline Pb2 CoMoO6 samples are prepared at high pressure and temperature conditions. The compound crystallizes into an antiferroelectric Pnma orthorhombic double perovskite structure at room temperature owing to the opposite displacements dominated by Pb2+ ions. With increasing temperature to 400 K, a structural phase transition to cubic Fm-3m paraelectric phase occurs, accompanied by a sharp volume contraction of 0.41%. This is the first report of an antiferroelectric-to-paraelectric transition-induced NTE in Pb2 CoMoO6 . Moreover, the compound also exhibits remarkable NTE with an average volumetric coefficient of thermal expansion αV = -1.33 × 10-5 K-1 in a wide temperature range of 30-420 K. The as-prepared Pb2 CoMoO6 thus serves as a prototype material system for studying antiferroelectricity-induced NTE.

4.
Materials (Basel) ; 16(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512384

RESUMO

The superconducting state properties of the CuBa2Ca3Cu4O10+δ (Cu-1234) system, with a transition temperature as high as 117.5 K, were investigated. The ac magnetic susceptibility measurements confirmed a very sharp transition to the superconducting state. The upper critical field, Hc2, as high as 91 T, and the irreversibility field, Hirr, as high as 21 T at 77 K, were determined using dc SQUID magnetization measurements. The intragrain critical current density, jc, estimated from a magnetic hysteresis loop, is as high as 5 × 109 A/m2 in a self-generated magnetic field at 77 K. However, the intergrain critical current density in the studied material is smaller by four orders of magnitude due to very weak intergrain connections.

5.
Adv Mater ; 35(17): e2209759, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36795948

RESUMO

Exchange bias (EB) is highly desirable for widespread technologies. Generally, conventional exchange-bias heterojunctions require excessively large cooling fields for sufficient bias fields, which are generated by pinned spins at the interface of ferromagnetic and antiferromagnetic layers. It is crucial for applicability to obtain considerable exchange-bias fields with minimum cooling fields. Here, an exchange-bias-like effect is reported in a double perovskite, Y2 NiIrO6 , which shows long-range ferrimagnetic ordering below 192 K. It displays a giant bias-like field of 1.1 T with a cooling field of only 15 Oe at 5 K. This robust phenomenon appears below 170 K. This fascinating bias-like effect is the secondary effect of the vertical shifts of the magnetic loops, which is attributed to the pinned magnetic domains due to the combination of strong spin-orbit coupling on Ir, and antiferromagnetically coupled Ni- and Ir-sublattices. The pinned moments in Y2 NiIrO6 are present throughout the full volume, not just at the interface as in conventional bilayer systems.

6.
Inorg Chem ; 61(33): 13184-13190, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35943140

RESUMO

A spinel compound FeAl2S4 was successfully synthesized under high-pressure and high-temperature conditions and was systematically characterized via the structural, magnetic, and specific heat measurements. It crystallizes into a cubic structure with the space group Fd3̅m (no. 227) and the lattice constant a = 10.0207(2) Å. A Fe/Al site inversion is found; that is, the molecular formula can be rewritten as (Fe1-xAlx)(Al2-xFex)S4, and the inversion parameter x is about 0.22. Magnetic susceptibility measurements indicate that FeAl2S4 undergoes a spin glass behavior, which is confirmed by ac susceptibility and specific heat measurements. The freezing temperature Tf ∼ 10.5 K and Weiss temperature Tθ ∼ -107.4 K lead to a high frustration parameter f = |Tθ/Tf| of about 10, which suggests that FeAl2S4 is a high-frustration magnet. Our results indicate that high pressure can help stabilize the spinel structure with small R̅σ and the cation inversion plays an important role in the formation of the spin glass state.

7.
Nat Commun ; 13(1): 2863, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606357

RESUMO

Searching for superconductivity with Tc near room temperature is of great interest both for fundamental science & many potential applications. Here we report the experimental discovery of superconductivity with maximum critical temperature (Tc) above 210 K in calcium superhydrides, the new alkali earth hydrides experimentally showing superconductivity above 200 K in addition to sulfur hydride & rare-earth hydride system. The materials are synthesized at the synergetic conditions of 160~190 GPa and ~2000 K using diamond anvil cell combined with in-situ laser heating technique. The superconductivity was studied through in-situ high pressure electric conductance measurements in an applied magnetic field for the sample quenched from high temperature while maintained at high pressures. The upper critical field Hc(0) was estimated to be ~268 T while the GL coherent length is ~11 Å. The in-situ synchrotron X-ray diffraction measurements suggest that the synthesized calcium hydrides are primarily composed of CaH6 while there may also exist other calcium hydrides with different hydrogen contents.

8.
Adv Mater ; 34(12): e2106728, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064593

RESUMO

The search of novel quasi-1D materials is one of the important aspects in the field of material science. Toroidal moment, the order parameter of ferrotoroidic order, can be generated by a head-to-tail configuration of magnetic moment. It has been theoretically proposed that 1D dimerized and antiferromagnetic (AFM)-like spin chain hosts ferrotoroidicity and has the toroidal moment composed of only two antiparallel spins. Here, the authors report a ferrotoroidic candidate of Ba6 Cr2 S10 with such a theoretical model of spin chain. The structure consists of unique dimerized face-sharing CrS6 octahedral chains along the c axis. An AFM-like ordering at ≈10 K breaks both space- and time-reversal symmetries and the magnetic point group of mm'2'allows three ferroic orders in Ba6 Cr2 S10 : (anti)ferromagnetic, ferroelectric, and ferrotoroidic orders. Their investigation reveals that Ba6 Cr2 S10 is a rare ferrotoroid ic candidate with quasi 1D spin chain, which can be considered as a starting point for the further exploration of the physics and applications of ferrotoroidicity.

9.
Nat Commun ; 12(1): 1917, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772004

RESUMO

PbMO3 (M = 3d transition metals) family shows systematic variations in charge distribution and intriguing physical properties due to its delicate energy balance between Pb 6s and transition metal 3d orbitals. However, the detailed structure and physical properties of PbFeO3 remain unclear. Herein, we reveal that PbFeO3 crystallizes into an unusual 2ap × 6ap × 2ap orthorhombic perovskite super unit cell with space group Cmcm. The distinctive crystal construction and valence distribution of Pb2+0.5Pb4+0.5FeO3 lead to a long range charge ordering of the -A-B-B- type of the layers with two different oxidation states of Pb (Pb2+ and Pb4+) in them. A weak ferromagnetic transition with canted antiferromagnetic spins along the a-axis is found to occur at 600 K. In addition, decreasing the temperature causes a spin reorientation transition towards a collinear antiferromagnetic structure with spin moments along the b-axis near 418 K. Our theoretical investigations reveal that the peculiar charge ordering of Pb generates two Fe3+ magnetic sublattices with competing anisotropic energies, giving rise to the spin reorientation at such a high critical temperature.

10.
Nat Commun ; 12(1): 1356, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649302

RESUMO

High temperature superconductivity in cuprates arises from doping a parent Mott insulator by electrons or holes. A central issue is how the Mott gap evolves and the low-energy states emerge with doping. Here we report angle-resolved photoemission spectroscopy measurements on a cuprate parent compound by sequential in situ electron doping. The chemical potential jumps to the bottom of the upper Hubbard band upon a slight electron doping, making it possible to directly visualize the charge transfer band and the full Mott gap region. With increasing doping, the Mott gap rapidly collapses due to the spectral weight transfer from the charge transfer band to the gapped region and the induced low-energy states emerge in a wide energy range inside the Mott gap. These results provide key information on the electronic evolution in doping a Mott insulator and establish a basis for developing microscopic theories for cuprate superconductivity.

11.
Nat Commun ; 12(1): 747, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531480

RESUMO

The simple ABO3 and A-site-ordered AA'3B4O12 perovskites represent two types of classical perovskite functional materials. There are well-known simple perovskites with ferroelectric properties, while there is still no report of ferroelectricity due to symmetry breaking transition in A-site-ordered quadruple perovskites. Here we report the high pressure synthesis of an A-site-ordered perovskite PbHg3Ti4O12, the only known quadruple perovskite that transforms from high-temperature centrosymmetric paraelectric phase to low-temperature non-centrosymmetric ferroelectric phase. The coordination chemistry of Hg2+ is changed from square planar as in typical A-site-ordered quadruple perovskite to a rare stereo type with 8 ligands in PbHg3Ti4O12. Thus PbHg3Ti4O12 appears to be a combinatory link from simple ABO3 perovskites to A-site-ordered AA'3Ti4O12 perovskites, sharing both displacive ferroelectricity with former and structure coordination with latter. This is the only example so far showing ferroelectricity due to symmetry breaking phase transition in AA'3B4O12-type A-site-ordered perovskites, and opens a direction to search for ferroelectric materials.

12.
Sci Bull (Beijing) ; 66(14): 1395-1400, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654365

RESUMO

We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca2CuO2Cl2 parent Mott insulator of cuprates. We find that when the two dopants approach each other, the transfer of spectral weight from high energy Hubbard band to low energy in-gap state creates a broad peak and nearly V-shaped gap around the Fermi level. The peak position shows a sudden drop at distance around 4 a0 and then remains almost constant. The in-gap states exhibit peculiar spatial distributions depending on the configuration of the two dopants relative to the underlying Cu lattice. These results shed important new lights on the evolution of low energy electronic states when a few holes are doped into parent cuprates.

13.
Inorg Chem ; 59(8): 5377-5385, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32243145

RESUMO

The report on the superconductivity of the two-legged spin ladders BaFe2S3 and BaFe2Se3 has established 123-type iron chalcogenides as a novel subgroup in the iron-based superconductor family and has stimulated the continuous exploration of other iron-based materials with new structures and potentially novel properties. In this paper, we report the systematic study of a new quasi-one-dimensional (1D) iron-based compound, Ba9Fe3Te15, including its synthesis and magnetic properties. The high-pressure synthesized Ba9Fe3Te15 crystallized in a hexagonal structure that mainly consisted of face-sharing FeTe6 octahedral chains running along the c axis, with a lattice constant of a = 10.23668 Å; this led to weak interchain coupling and an enhanced one-dimensionality. The systematic static and dynamic magnetic properties were comprehensively studied experimentally. The dc magnetic susceptibility showed typical 1D antiferromagnetic characteristics, with a Tmax at 190 K followed by a spin glass (SG) state with freezing at Tf ≈ 6.0 K, which were also unambiguously proved by ac susceptibility measurements. Additionally, X-ray magnetic circular dichroism (XMCD) experiments revealed an unexpected orbital moment for Fe2+, i.e., 0.84 µB per Fe in Ba9Fe3Te15. The transport property is electrically insulating, with a thermal activation gap of 0.32 eV. These features mark Ba9Fe3Te15 as an alternative type of iron-based compound, providing a diverse candidate for high-pressure studies in order to pursue some emerging physics.

14.
Angew Chem Int Ed Engl ; 59(21): 8240-8246, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32185857

RESUMO

Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure-induced disordering could require recognition of an order-disorder transition in solid-state physics/chemistry and geophysics. Double perovskites Y2 CoIrO6 and Y2 CoRuO6 polymorphs synthesized at 0, 6, and 15 GPa show B-site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long-range ferrimagnetic ordering in the B-site ordered samples are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit-cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2 CoIrO6 and Y2 CoRuO6 .

15.
PLoS One ; 14(9): e0222191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31498816

RESUMO

Potential environmental risks of genetically modified (GM) crops have raised concerns. To better understand the effect of transgenic rice on the bacterial community in paddy soil, a field experiment was carried out using pairs of rice varieties from two subspecies (indica and japonica) containing bar transgene with herbicide resistance and their parental conventional rice. The 16S rRNA gene of soil genomic DNA from different soil layers at the maturity stage was sequenced using high-throughput sequencing on the Illumina MiSeq platform to explore the microbial community diversity among different rice soils. There were no significant differences in diversity indices between transgenic japonica rice and its sister conventional rice (japonica pair) among different soil layers, but, significant differences was observed between transgenic indica rice and its conventional rice (indica pair) in the topsoil layer around concentrated rice roots according to the ace diversity index. Though the japonica rice soil and indica rice soil were shared several key genera, including Rivibacter, Anaeromyxobacter, Roseomonas, Geobacter, Thiobacillus, Clostridium, and Desulfobulbus, the primary bacterial genera in indica rice soil were different from those in japonica rice. Synechococcus and Dechloromonas were present in japonica rice samples, while Chloronema, Flexibacter, and Blastocatella were observed in indica rice soil. Moreover, the abundance of genera between GM and non-GM varieties in japonica rice was significantly different from indica rice, and several bacterial communities influenced these differences. Anaerovorax was more abundant in transgenic japonica rice soil than conventional rice soil, while it was deficient in transgenic indica rice soil compared to conventional rice soil, and opposite responses to Deferrisoma were in that of indica rice. Thus, we concluded that transgenic indica and japonica rice had different effects on soil bacteria compared with their corresponding sister conventional rice. However, these composition and abundance difference only occurred for a few genera but had no effect on the primary genera and soil characteristics were mainly contributed to these differences. Thus, differences in bacterial community structure can be ignored when evaluating the impacts of transgenic rice in the complex soil microenvironment.


Assuntos
Microbiota , Oryza/genética , Plantas Geneticamente Modificadas , Microbiologia do Solo , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Solo
16.
Inorg Chem ; 57(9): 5108-5113, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29629763

RESUMO

A new layered oxyselenide, Ba2CuO2Cu2Se2, was synthesized under high-pressure and high-temperature conditions and was characterized via structural, magnetic, and transport measurements. It crystallizes into space group I4/ mmm and consists of a square lattice of [CuO2] planes and antifluorite-type [Cu2Se2] layers, which are alternately stacked along the c axis. The lattice parameters are obtained as a = b = 4.0885 Å and c = 19.6887 Å. The Cu-O bond length is given by half of the lattice constant a, i.e., 2.0443 Å. Ba2CuO2Cu2Se2 is a semiconductor with a resistivity of ∼18 mΩ·cm at room temperature. No magnetic transition was found in the measured temperature range, and the Curie-Weiss temperature was obtained as -0.2 K, suggesting a very weak exchange interaction. The DFT+ Ueff calculation demonstrates that the band gap is about 0.2 eV for the supposed antiferromagnetic order, and the density of state near the top of the valence band is mainly contributed from the Se 4p electrons.

17.
J Phys Condens Matter ; 30(21): 214001, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29651997

RESUMO

In this work, a novel compound Ba9V3Se15 with one-dimensional (1D) spin chains was synthesized under high-pressure and high-temperature conditions. It was systematically characterized via structural, magnetic, thermodynamic and transport measurements. Ba9V3Se15 crystallizes into a hexagonal structure with a space group of P-6c2 (188) and the lattice constants of a = b = 9.5745(7) Å and c = 18.7814(4) Å. The crystal structure consists of face-sharing octahedral VSe6 chains along c axis, which are trimeric and arranged in a triangular lattice in ab-plane. Ba9V3Se15 is a semiconductor and undergoes complex magnetic transitions. In the zero-field-cooled (ZFC) process with magnetic field of 10 Oe, Ba9V3Se15 sequentially undergoes ferrimagnetic and spin cluster glass transition at 2.5 K and 3.3 K, respectively. When the magnetic field exceeds 50 Oe, only the ferrimagnetic transition can be observed. Above the transition temperature, the specific heat contains a significant magnetic contribution that is proportional to T 1/2. The calculation suggests that the nearest neighbor (NN) intra-chain antiferromagnetic exchange J 1 is much larger than the next nearest neighbor (NNN) intra-chain ferromagnetic exchange J 2. Therefore, Ba9V3Se15 can be regarded as an effective ferromagnetic chains with effective spin-1/2 by the formation of the V(2)(↓) V(1)(↑) V(2)(↓) cluster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...