Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Food Chem ; 460(Pt 1): 140442, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39047475

RESUMO

Soy isolate protein / chitooligosaccharide (SPI/COS) glycosylated conjugates was prepared and employed as an emulsifier to stabilize carvacrol-loaded nanoemulsions (CNE-SPI/COS). The effects of CNE-SPI/COS on the oxidation and aggregation of myofibrillar protein (MPs) from sea bass (Lateolabrax maculatus) were investigated. Samples were immersed in sterile water (CK), SPI/COS solution and CNE-SPI/COS solution, respectively, follow by a 15-day refrigerated storage. MPs were extracted from fish fillets at 3-day intervals, then assessed for the oxidation degree and conformational changes in MPs, as well as structural variations in myofibrils. Compared with the CK group, the results obtained from protein oxidation assessment clarified that the oxidation and aggregation of MPs was significantly reduced by the CNE-SPI/COS treatment, as evidenced by the higher total sulfhydryl content and Ca2+-ATPase activity and lower surface hydrophobicity. Conformational analysis of MPs showed that CNE-SPI/COS was effective in maintaining the ordered secondary structure of MPs and reducing the exposure of hydrophobic residues in the hydrophobic core of the tertiary structure. In addition, CNE-SPI/COS was found to be effective in protecting the microstructure of muscle fibers and myofibrils in fish fillets. These results suggest that CNE-SPI/COS can be a promising method to prevent protein oxidation and aggregation in fish.

2.
Nat Commun ; 15(1): 6167, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039053

RESUMO

Translating RNA-seq into clinical diagnostics requires ensuring the reliability and cross-laboratory consistency of detecting clinically relevant subtle differential expressions, such as those between different disease subtypes or stages. As part of the Quartet project, we present an RNA-seq benchmarking study across 45 laboratories using the Quartet and MAQC reference samples spiked with ERCC controls. Based on multiple types of 'ground truth', we systematically assess the real-world RNA-seq performance and investigate the influencing factors involved in 26 experimental processes and 140 bioinformatics pipelines. Here we show greater inter-laboratory variations in detecting subtle differential expressions among the Quartet samples. Experimental factors including mRNA enrichment and strandedness, and each bioinformatics step, emerge as primary sources of variations in gene expression. We underscore the profound influence of experimental execution, and provide best practice recommendations for experimental designs, strategies for filtering low-expression genes, and the optimal gene annotation and analysis pipelines. In summary, this study lays the foundation for developing and quality control of RNA-seq for clinical diagnostic purposes.


Assuntos
Benchmarking , Biologia Computacional , Controle de Qualidade , RNA-Seq , Padrões de Referência , Benchmarking/métodos , Humanos , RNA-Seq/métodos , RNA-Seq/normas , Biologia Computacional/métodos , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Chempluschem ; : e202400341, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975963

RESUMO

Dynamic covalent chemistry is a promising strategy for developing recyclable thermosets and their carbon fiber reinforced composites, in line with the goal of green and sustainable development. However, a significant challenge lies in balancing the dynamic reversibility and the desired service performances, such as thermal, mechanical properties, and flame retardancy. It has hindered the broader application of dynamic materials beyond the initial proof of concept. This concept provides an overview of the current state of research on phosphorus-containing covalent adaptable networks (CANs), highlighting key designing and regulating principles for tailoring comprehensive properties including flame retardancy, mechanical and thermal properties, as well as dynamic behaviours such as malleability, reprocessability and degradability. Finally, new frontiers and opportunities in developing high-performance sustainable CANs-based thermosets and their carbon fiber composites for structural engineering applications are prospected.

4.
Front Oncol ; 14: 1408524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846972

RESUMO

The incidence of leiomyosarcoma (LMS) is about 4-5/100,000 individuals per year. LMSs occurring in the small bowel are even rarer, and their preoperative diagnosis is very difficult. We described two patients with pathologically confirmed small bowel LMS and analyzed their clinical and medical imaging features. Similar cases reported in English in Pubmed database over the past decade were reviewed and summarized. These tumors were categorized by the growth direction and relationship with the intestinal lumen into three types: intraluminal (n = 10), intermural (n = 3), and extraluminal (n = 7). Notably, among the three types of LMS, the intramural leiomyosarcoma stands out as a noteworthy subtype. Emerging evidence suggests that smaller tumor size (< 5 cm) and the intraluminal type may serve as favorable prognostic indicators, while the extraluminal type is associated with relatively poor prognosis. Furthermore, the integration of imaging features with CA125 and LDH biomarkers holds promise for potential diagnostic value in LMS.

5.
Chem Sci ; 15(24): 9318-9324, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38903240

RESUMO

The global demand for poly-grade ethylene (C2H4) is increasing annually. However, the energy-saving purification of this gas remains a major challenge due to the similarity in molecular properties among the ternary C2 hydrocarbons. To address this challenge, we report an approach of systematic tuning of the pore environment with organic sites (from -COOH to -CF3, then to -CH3) in porous coordination polymers (PCPs), of which NTU-73-CH3 shows remarkable capability for the direct production of poly-grade C2H4 from ternary C2 hydrocarbons under ambient conditions. In comparison, the precursor structure of NTU-73-COOH is unable to purify C2H4, while NTU-73-CF3 shows minimal ability to harvest C2H4. This is because the changed binding sites in the NTU-73-series not only eliminate the channel obstruction caused by the formation of gas clusters, but also enhance the interaction with acetylene (C2H2) and ethane (C2H6), as validated by in situ crystallographic and Raman analysis. Our findings, in particular the systematic tuning of the pore environment and the efficient C2H4 purification by NTU-73-CH3, provide a blueprint for the creation of advanced porous families that can handle desired tasks.

6.
Chemosphere ; 359: 142251, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710413

RESUMO

BACKGROUND: The individual and combined effects of PM2.5 constituents on cardiometabolic risk factors are sparsely investigated. Besides, the key cardiometabolic risk factor that PM2.5 constituents targeted and the biological mechanisms remain unclear. METHOD: A multistage, stratified cluster sampling survey was conducted in two typically air-polluted Chinese cities. The PM2.5 and its constituents including sulfate, nitrate, ammonium, organic matter, and black carbon were predicted using a machine learning model. Twenty biomarkers in three category were simultaneously adopted as cardiometabolic risk factors. We explored the individual and mixture association of long-term PM2.5 constituents with these markers using generalized additive model and quantile-based g-computation, respectively. To minimize potential confounding effects, we accounted for covariates including demographic, lifestyle, meteorological, temporal trends, and disease-related information. We further used ROC curve and mediation analysis to identify the key subclinical indicators and explore whether inflammatory mediators mediate such association, respectively. RESULT: PM2.5 constituents was positively correlated with HOMA-B, TC, TG, LDL-C and LCI, and negatively correlated with PP and RC. Further, PM2.5 constituent mixture was positive associated with DBP, MAP, HbA1c, HOMA-B, AC, CRI-1 and CRI-2, and negative associated with PP and HDL-C. The ROC analysis further reveals that multiple cardiometabolic risk factors can collectively discriminate exposure to PM2.5 constituents (AUC>0.9), among which PP and CRI-2 as individual indicators exhibit better identifiable performance for nitrate and ammonium (AUC>0.75). We also found that multiple blood lipid indicators may be affected by PM2.5 and its constituents, possibly mediated through complement C3 or hsCRP. CONCLUSION: Our study suggested associations of individual and combined PM2.5 constituents exposure with cardiometabolic risk factors. PP and CRI-2 were the targeted markers of long-term exposure to nitrate and ammonium. Inflammation may serve as a mediating factor between PM2.5 constituents and dyslipidemia, which enhance current understanding of potential pathways for PM2.5-induced preclinical cardiovascular responses.


Assuntos
Poluentes Atmosféricos , Fatores de Risco Cardiometabólico , Inflamação , Material Particulado , Material Particulado/análise , Humanos , Poluentes Atmosféricos/análise , China , Biomarcadores/sangue , Masculino , Exposição Ambiental/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Feminino , Pessoa de Meia-Idade , Cidades , Adulto , Doenças Cardiovasculares/epidemiologia , Fatores de Risco , Aprendizado de Máquina , Nitratos/análise
7.
J Colloid Interface Sci ; 669: 835-843, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38749222

RESUMO

Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.


Assuntos
Dexametasona , Psoríase , Dispositivos Eletrônicos Vestíveis , Animais , Camundongos , Psoríase/tratamento farmacológico , Psoríase/patologia , Dexametasona/administração & dosagem , Dexametasona/farmacologia , Preparações de Ação Retardada/química , Taninos/química , Taninos/farmacologia , Liberação Controlada de Fármacos , Hidrogéis/química , Sistemas de Liberação de Medicamentos , Adesivo Transdérmico , Poliaminas
8.
Ecol Evol ; 14(4): e11269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38654711

RESUMO

Limestone forests are an unusual habitat for primates, especially fragmented limestone habitats. However, while some research has been conducted on François' langurs (Trachypithecus francois) in these habitats, there is still a need to improve the understanding of their behavioral adaptations to the fragmented limestone habitat. We collected data on the diet of François' langurs in a fragmented limestone habitat in Encheng National Nature Reserve, southwestern Guangxi, China using instantaneous scanning sampling, and their feeding adaptations to the fragmented forest were examined. The results indicated that a total of 101 species of plants were consumed by the langurs. They also fed on two non-plant components, including cliff minerals and at least one species of insect. The langurs ate a higher number of food species in Encheng when compared with the other geographic populations, and they maintained a high level of food diversity and ate more vines. Moreover, they were highly selective in their use of vegetation in their home range, and fewer plants provided a high-quality food source. During the season when food resources were scarce, the consumption of fruits and young leaves decreased as their availability decreased. This led to the use of other food components, such as mature leaves and seeds. The findings support that François' langurs adjust their feeding behavior to cope with seasonal and micro-variations in their dietary requirements and to adapt to their particular environment.

9.
Hortic Res ; 11(4): uhae040, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623073

RESUMO

The gaseous plant hormone ethylene regulates plant development, growth, and responses to stress. In particular, ethylene affects tolerance to salinity; however, the underlying mechanisms of ethylene signaling and salt tolerance are not fully understood. Here, we demonstrate that salt stress induces the degradation of the ethylene receptor ETHYLENE RESPONSE 3 (RhETR3) in rose (Rosa hybrid). Furthermore, the TspO/MBR (Tryptophan-rich sensory protein/mitochondrial benzodiazepine receptor) domain-containing membrane protein RhTSPO interacted with RhETR3 to promote its degradation in response to salt stress. Salt tolerance is enhanced in RhETR3-silenced rose plants but decreased in RhTSPO-silenced plants. The improved salt tolerance of RhETR3-silenced rose plants is partly due to the increased expression of ACC SYNTHASE1 (ACS1) and ACS2, which results in an increase in ethylene production, leading to the activation of ETHYLENE RESPONSE FACTOR98 (RhERF98) expression and, ultimately accelerating H2O2 scavenging under salinity conditions. Additionally, overexpression of RhETR3 increased the salt sensitivity of rose plants. Co-overexpression with RhTSPO alleviated this sensitivity. Together, our findings suggest that RhETR3 degradation is a key intersection hub for the ethylene signalling-mediated regulation of salt stress.

10.
Nat Commun ; 15(1): 3295, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632230

RESUMO

Van der Waals semiconductors exemplified by two-dimensional transition-metal dichalcogenides have promised next-generation atomically thin optoelectronics. Boosting their interaction with light is vital for practical applications, especially in the quantum regime where ultrastrong coupling is highly demanded but not yet realized. Here we report ultrastrong exciton-plasmon coupling at room temperature in tungsten disulfide (WS2) layers loaded with a random multi-singular plasmonic metasurface deposited on a flexible polymer substrate. Different from seeking perfect metals or high-quality resonators, we create a unique type of metasurface with a dense array of singularities that can support nanometre-sized plasmonic hotspots to which several WS2 excitons coherently interact. The associated normalized coupling strength is 0.12 for monolayer WS2 and can be up to 0.164 for quadrilayers, showcasing the ultrastrong exciton-plasmon coupling that is important for practical optoelectronic devices based on low-dimensional semiconductors.

11.
Biomimetics (Basel) ; 9(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667237

RESUMO

In this paper, we proposed a miniature quadrupedal piezoelectric robot with a mass of 1.8 g and a body length of 4.6 cm. The robot adopts a novel spatial parallel mechanism as its transmission. Each leg of the robot has two degrees of freedom (DOFs): swing and lift. The trajectory necessary for walking is achieved by the appropriate phasing of these two DOFs. A new manufacturing method for piezoelectric actuators was developed. During the stacking process, discrete patterned PZT pieces are used to avoid dielectric failure caused by laser cutting. Copper-clad FR-4 is used as the solder pad instead of copper foil, making the connection between the pad and the actuator more reliable. The lift powertrain of the robot was modeled and the link length of the powertrain was optimized based on the model. The maximum output force of each leg can reach 26 mN under optimized design parameters, which is 1.38 times the required force for successful walking. The frequency response of the powertrain was measured and fitted to the second-order system, which enabled increased leg amplitudes near the powertrain resonance of approximately 70 Hz with adjusted drive signals. The maximum speed of the robot without load reached 48.66 cm/s (10.58 body lengths per second) and the payload capacity can reach 5.5 g (3.05 times its mass) near the powertrain resonance.

12.
J Hepatocell Carcinoma ; 11: 747-766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680213

RESUMO

Purpose: Nonsense-mediated RNA decay (NMD), a surveillance pathway for selective degradation of aberrant mRNAs, is associated with cancer progression. Its potential as a predictor for aggressive hepatocellular carcinoma (HCC) is unclear. Here, we present an innovative NMD risk model for predicting HCC prognosis. Methods: The Cancer Genome Atlas (TCGA) data of 374 liver HCC (LIHC) and 50 normal liver samples were extracted. A risk model based on NMD-related genes was developed through least absolute shrinkage and selection operator Cox (LASSO-Cox) regression of the LIHC-TCGA data. Prognostic validation was done using GSE54236, GSE116174, and GSE76427 data. Univariate and multivariate Cox regression analyses were conducted to assess the prognostic value of the model. We also constructed nomograms for survival prediction. Tumor immune infiltration was evaluated using the CIBERSORT algorithm, and the tumor cell phenotype was assessed. Finally, mouse experiments verified UPF3B knockdown effects on HCC tumor characteristics. Results: We developed a risk model based on four NMD-related genes (PABPC1, RPL8, SMG5, and UPF3B) and validated it using GSE54236, GSE116174, and GSE76427 data. The model effectively distinguished high- and low-risk groups corresponding to unfavorable and favorable HCC outcomes. Its prognostic prediction accuracy was confirmed through time-dependent ROC analysis, and clinical-use nomograms with calibration curves were developed. Single-cell RNA sequencing results indicated significantly higher expression of SMG5 and UPF3B in tumor cells. Knockdown of SMG5 and UPF3B inhibited HCC cell proliferation, invasion, and migration, while affecting cell-cycle progression and apoptosis. In vivo, UPF3B knockdown delayed tumor growth and increased immune cell infiltration. Conclusion: Our NMD-related gene-based risk model can help identify therapeutic targets and biomarkers for HCC. Additionally, it assists clinicians in predicting the prognosis of HCC patients.

13.
J Hazard Mater ; 470: 134224, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583198

RESUMO

This study employs a combination of bibliometric and epidemiological methodologies to investigate the relationship between metal exposure and glucose homeostasis. The bibliometric analysis quantitatively assessed this field, focusing on study design, predominant metals, analytical techniques, and citation trends. Furthermore, we analyzed cross-sectional data from Beijing, examining the associations between 14 blood metals and 6 glucose homeostasis markers using generalized linear models (GLM). Key metals were identified using LASSO-PIPs criteria, and Bayesian kernel machine regression (BKMR) was applied to assess metal mixtures, introducing an "Overall Positive/Negative Effect" concept for deeper analysis. Our findings reveal an increasing research interest, particularly in selenium, zinc, cadmium, lead, and manganese. Urine (27.6%), serum (19.0%), and whole blood (19.0%) were the primary sample types, with cross-sectional studies (49.5%) as the dominant design. Epidemiologically, significant associations were found between 9 metals-cobalt, copper, lithium, manganese, nickel, lead, selenium, vanadium, zinc-and glucose homeostasis. Notably, positive-metal mixtures exhibited a significant overall positive effect on insulin levels, and notable interactions involving nickel were identified. These finding not only map the knowledge landscape of research in this domain but also introduces a novel perspective on the analysis strategies for metal mixtures.


Assuntos
Bibliometria , Glicemia , Homeostase , Humanos , Glicemia/análise , Metais/análise , Estudos Transversais , Estudos Epidemiológicos , Teorema de Bayes
14.
BMC Genomics ; 25(1): 262, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459433

RESUMO

Plague, as an ancient zoonotic disease caused by Yersinia pestis, has brought great disasters. The natural plague focus of Marmota himalayana in the Qinghai-Tibet Plateau is the largest, which has been constantly active and the leading source of human plague in China for decades. Understanding the population genetics of M. himalayana and relating that information to the biogeographic distribution of Yersinia pestis and plague outbreaks are greatly beneficial for the knowledge of plague spillover and arecrucial for pandemic prevention. In the present research, we assessed the population genetics of M. himalayana. We carried out a comparative study of plague outbreaks and the population genetics of M. himalayana on the Qinghai-Tibet Plateau. We found that M. himalayana populations are divided into two main clusters located in the south and north of the Qinghai-Tibet Plateau. Fourteen DFR genomovars of Y. pestis were found and exhibited a significant region-specific distribution. Additionally, the increased genetic diversity of plague hosts is positively associated with human plague outbreaks. This insight gained can improve our understanding of biodiversity for pathogen spillover and provide municipally directed targets for One Health surveillance development, which will be an informative next step toward increased monitoring of M. himalayana dynamics.


Assuntos
Marmota , Yersinia pestis , Animais , Humanos , Tibet/epidemiologia , China/epidemiologia , Surtos de Doenças , Yersinia pestis/genética , Variação Genética
15.
Acta Trop ; 253: 107176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460829

RESUMO

Pulmonary tuberculosis (PTB) stands as a significant and prevalent infectious disease in China. Integrating 13 natural and socioeconomic factors, we conduct nine machine learning (ML) models alongside the Tree-Structured Parzen Estimator to predict the monthly PTB incidence rate from 2013 to 2019 in mainland China. With explainable ML techniques, our research highlights that population size, per capita GDP, and PM10 concentration emerge as the primary determinants influencing the PTB incidence rate. We delineate both the independent and interactive impacts of these factors on the PTB incidence rate. Furthermore, crucial thresholds associated with factors influencing the PTB incidence rate are identified. Taking factors that have a positive effect on reducing the incidence rate of PTB as an example, the thresholds at which the effects of factors PM2.5, PM10, O3, and RH on the incidence rate change from increase to decrease are 105.5 µg/m3, 75.5 µg/m3, 90.8 µg/m3, and 72.3 % respectively. Our work will contribute valuable insights for public health interventions.


Assuntos
Poluentes Atmosféricos , Tuberculose Pulmonar , Humanos , Poluentes Atmosféricos/análise , Incidência , Fatores Socioeconômicos , Tuberculose Pulmonar/epidemiologia , China/epidemiologia
16.
Nat Commun ; 15(1): 1747, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409100

RESUMO

Energy transfer is a ubiquitous phenomenon that delivers energy from a blue-shifted emitter to a red-shifted absorber, facilitating wide photonic applications. Two-dimensional (2D) semiconductors provide unique opportunities for exploring novel energy transfer mechanisms in the atomic-scale limit. Herein, we have designed a planar optical microcavity-confined MoS2/hBN/WS2 heterojunction, which realizes the strong coupling among donor exciton, acceptor exciton, and cavity photon mode. This configuration demonstrates an unconventional energy transfer via polariton relaxation, brightening MoS2 with a record-high enhancement factor of ~440, i.e., two-order-of-magnitude higher than the data reported to date. The polariton relaxation features a short characteristic time of ~1.3 ps, resulting from the significantly enhanced intra- and inter-branch exciton-exciton scattering. The polariton relaxation dynamics is associated with Rabi energies in a phase diagram by combining experimental and theoretical results. This study opens a new direction of microcavity 2D semiconductor heterojunctions for high-brightness polaritonic light sources and ultrafast polariton carrier dynamics.

17.
Biochem Biophys Res Commun ; 700: 149535, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38308909

RESUMO

To compare the merits and drawbacks of three approaches for establishing a rabbit model of nonobstructive coronary microcirculatory disease, namely, open thoracic subtotal ligation of coronary arteries, ultrasound-guided cardiac microsphere injection, and sodium laurate injection. New Zealand rabbits were allocated to four groups: a normal group (Blank group), an Open-chest group (Open-chest), a microsphere group (Echo-M), and a sodium laurate group (Echo-SL), each comprising 10 rabbits. The rabbits were sacrificed 24 h after the procedures, and their echocardiography, stress myocardial contrast echocardiography, pathology, and surgical times were compared. The results demonstrated varying degrees of reduced cardiac function in all three experimental groups, the Open-chest group exhibiting the most significant decline. The myocardial filling in the affected areas was visually analyzed by myocardial contrast echocardiography, revealing sparse filling at rest but more after stress. Quantitative analysis of perfusion parameters (ß, A, MBF) in the affected myocardium showed reduced values, the Open-chest group having the most severe reductions. No differences were observed in stress myocardial acoustic imaging parameters between the Echo-M and Echo-SL groups. Among the pathological presentations, the Open-chest model predominantly exhibited localized ischemia, while the Echo-M model was characterized by mechanical physical embolism, and the Echo-SL model displayed in situ thrombosis as the primary pathological feature. Inflammatory responses and collagen deposition were observed in all groups, with the severity ranking of Open-chest > Echo-SL > Echo-M. The ultrasound-guided intracardiac injection method used in this experiment outperformed open-chest surgery in terms of procedural efficiency, invasiveness, and maneuverability. This study not only optimizes established cardiac injection techniques but also offers valuable evidence to support clinical investigations through a comparison of various modeling methods.


Assuntos
Doença da Artéria Coronariana , Circulação Coronária , Coelhos , Animais , Microcirculação , Circulação Coronária/fisiologia , Miocárdio/patologia
18.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38176065

RESUMO

Optical nanoantennas possess broad applications in the fields of photodetection, environmental science, biosensing and nonlinear optics, owing to their remarkable ability to enhance and confine the optical field at the nanoscale. In this article, we present a theoretical investigation of surface-enhanced photoluminescence spectroscopy for single molecules confined within novel Au bowtie nanoantenna, covering a wavelength range from the visible to near-infrared spectral regions. We employ the finite element method to quantitatively study the optical enhancement properties of the plasmonic field, quantum yield, Raman scattering and fluorescence. Additionally, we systematically examine the contribution of nonlocal dielectric response in the gap mode to the quantum yield, aiming to gain a better understanding of the fluorescence enhancement mechanism. Our results demonstrate that altering the configuration of the nanoantenna has a significant impact on plasmonic sensitivity. The nonlocal dielectric response plays a crucial role in reducing the quantum yield and corresponding fluorescence intensity when the gap distance is less than 3 nm. However, a substantial excitation field can effectively overcome fluorescence quenching and enhance the fluorescence intensity. By optimizing nanoantenna configuration, the maximum enhancement of surface-enhanced Raman can be turned to 9 and 10 magnitude orders in the visible and near-infrared regions, and 3 and 4 magnitude orders for fluorescence enhancement, respectively. The maximum spatial resolutions of 0.8 nm and 1.5 nm for Raman and fluorescence are also achieved, respectively. Our calculated results not only provide theoretical guidance for the design and application of new nanoantennas, but also contribute to expanding the range of surface-enhanced Raman and fluorescence technology from the visible to the near-infrared region.

19.
Nat Biotechnol ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263515

RESUMO

Integrating single-cell datasets produced by multiple omics technologies is essential for defining cellular heterogeneity. Mosaic integration, in which different datasets share only some of the measured modalities, poses major challenges, particularly regarding modality alignment and batch effect removal. Here, we present a deep probabilistic framework for the mosaic integration and knowledge transfer (MIDAS) of single-cell multimodal data. MIDAS simultaneously achieves dimensionality reduction, imputation and batch correction of mosaic data by using self-supervised modality alignment and information-theoretic latent disentanglement. We demonstrate its superiority to 19 other methods and reliability by evaluating its performance in trimodal and mosaic integration tasks. We also constructed a single-cell trimodal atlas of human peripheral blood mononuclear cells and tailored transfer learning and reciprocal reference mapping schemes to enable flexible and accurate knowledge transfer from the atlas to new data. Applications in mosaic integration, pseudotime analysis and cross-tissue knowledge transfer on bone marrow mosaic datasets demonstrate the versatility and superiority of MIDAS. MIDAS is available at https://github.com/labomics/midas .

20.
Materials (Basel) ; 17(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255479

RESUMO

Adopting banana peel as a raw material, the adsorption properties of banana peel hydrothermal carbon modified with a KOH solution for lead ions in aqueous solution were studied. The surface structure and functional groups of the modified hydrothermal carbon were analyzed by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, the Brunner-Emmet-Teller (BET) method, element analysis, and Raman spectroscopy. The results showed that an adsorption capacity of 42.92 mg/g and a removal rate of 86.84% were achieved when the banana peel hydrothermal carbon was modified with a KOH solution of 0.5 mol/L, with a pH of 6 and a solid-liquid ratio of 1 g/L. The equilibrium adsorption time for lead ions in solution being adsorbed using KOH-modified hydrothermal carbon was 240 min, the adsorption process satisfied the quasi-second-order kinetic model and the Redlich-Peterson isotherm equation, and the equilibrium removal efficiency was 88.62%. The adsorption of lead ions using KOH-modified hydrothermal carbon is mainly chemical-physical adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA