Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744865

RESUMO

Female Aedes aegypti mosquitoes impose a severe global public health burden as vectors of multiple viral pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges like intense droughts and intermittent precipitation, which create unpredictable, suboptimal conditions for egg-laying. Here, we show that under drought-like conditions simulated in the laboratory, females retain mature eggs in their ovaries for extended periods, while maintaining the viability of these eggs until they can be laid in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes named tweedledee and tweedledum, each encoding a small, secreted protein that both show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. CRISPR-Cas9 deletion of both tweedledee and tweedledum demonstrates that they are specifically required for extended retention of viable eggs. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with 'insurance' to flexibly extend their reproductive schedule without losing reproductive capacity, thus allowing this species to exploit unpredictable habitats in a changing world.


Assuntos
Aedes , Culex , Animais , Masculino , Feminino , Humanos , Secas , Proteômica , Mosquitos Vetores , Sêmen
3.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782126

RESUMO

microRNA-218 (miR-218) has been linked to several cognition related neurodegenerative and neuropsychiatric disorders. However, whether miR-218 plays a direct role in cognitive functions remains unknown. Here, using the miR-218 knockout (KO) mouse model and the sponge/overexpression approaches, we showed that miR-218-2 but not miR-218-1 could bidirectionally regulate the contextual and spatial memory in the mice. Furthermore, miR-218-2 deficiency induced deficits in the morphology and presynaptic neurotransmitter release in the hippocampus to impair the long term potentiation. Combining the RNA sequencing analysis and luciferase reporter assay, we identified complement component 3 (C3) as a main target gene of miR-218 in the hippocampus to regulate the presynaptic functions. Finally, we showed that restoring the C3 activity in the miR-218-2 KO mice could rescue the synaptic and learning deficits. Therefore, miR-218-2 played an important role in the cognitive functions of mice through C3, which can be a mechanism for the defective cognition of miR-218 related neuronal disorders.


Assuntos
Complemento C3/genética , Hipocampo/metabolismo , Potenciação de Longa Duração , MicroRNAs/metabolismo , Vesículas Sinápticas/metabolismo , Regiões 3' não Traduzidas , Animais , Células Cultivadas , Complemento C3/metabolismo , Exocitose , Hipocampo/citologia , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...