Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Food Microbiol ; 411: 110552, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38159444

RESUMO

Maize moldy and spoilage due to microbial growth is a significant challenge in grain storage. This study aimed to evaluate the effectiveness of a zinc oxide nanocomposite, ZnO@mSiO2, prepared in our previous research, in inhibiting mold growth and preserving maize cell quality. The results demonstrated that ZnO@mSiO2 could effectively inhibit the growth of dominant microorganism, Aspergillus flavus, Talaromyces variabilis, Penicillium citrinum and Fusarium graminearum, in maize storage. Aspergillus flavus was selected as the model fungus, ZnO@mSiO2 effectively disrupted fungal hyphae structure, leading to reduced hyphal mass and inhibited spore germination. The inhibitory effect of ZnO@mSiO2 on mold growth was concentration-dependent. However, the ZnO@mSiO2 at an appropriate concentration (not exceeding 3.0 g/kg) preserved the integrity of maize cell membranes and enhancing the antioxidant activity within maize cells. The findings highlight the potential of ZnO@mSiO2 as an effective protectant to inhibit mold growth and preserve maize quality during storage.


Assuntos
Óxido de Zinco , Óxido de Zinco/farmacologia , Zea mays/microbiologia , Aspergillus flavus , Fungos , Grão Comestível
2.
Nat Commun ; 14(1): 7295, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957154

RESUMO

Mutations in SNCA, the gene encoding α-synuclein (αSyn), cause familial Parkinson's disease (PD) and aberrant αSyn is a key pathological hallmark of idiopathic PD. This α-synucleinopathy leads to mitochondrial dysfunction, which may drive dopaminergic neurodegeneration. PARKIN and PINK1, mutated in autosomal recessive PD, regulate the preferential autophagic clearance of dysfunctional mitochondria ("mitophagy") by inducing ubiquitylation of mitochondrial proteins, a process counteracted by deubiquitylation via USP30. Here we show that loss of USP30 in Usp30 knockout mice protects against behavioral deficits and leads to increased mitophagy, decreased phospho-S129 αSyn, and attenuation of SN dopaminergic neuronal loss induced by αSyn. These observations were recapitulated with a potent, selective, brain-penetrant USP30 inhibitor, MTX115325, with good drug-like properties. These data strongly support further study of USP30 inhibition as a potential disease-modifying therapy for PD.


Assuntos
Doença de Parkinson , Tioléster Hidrolases , Animais , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Tioléster Hidrolases/genética
3.
Se Pu ; 41(9): 799-806, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37712544

RESUMO

Carbon dioxide (CO2) absorption and capture is an effective measure to achieve the "dual carbon" goal of carbon peak and carbon neutrality in China. Organic amine compounds are widely used in the industrial separation and recovery of CO2. Thus, the establishment of analytical methods for organic amine compounds is of great significance for the research and development of carbon capture and storage (CCS) technology and carbon capture, utilization and storage (CCUS) technology. In this study, a method was developed for the determination of nine organic amine compounds in CO2 absorption liquid by hydrophilic interaction liquid chromatography (HILIC)-electrostatic field orbitrap high resolution mass spectrometry. The sample was diluted with water and filtered through a 0.22 µm nylon membrane before sampling and analysis. An Accucore HILIC column (100 mm×2.1 mm, 2.6 µm) was used for separation at 30 ℃. Gradient elution was conducted using 90% acetonitrile aqueous solution containing 5 mmol/L ammonium formate and 0.1% formic acid as mobile phase A and 10% acetonitrile aqueous solution containing 5 mmol/L ammonium formate and 0.1% formic acid as mobile phase B. Determination was performed using an electrospray ion source (ESI) in the positive ion mode. The quantitative analysis was carried out by standard addition method. The chromatographic retention performance of different chromatographic columns and the influence of different mobile phases on the separation of the organic amine compounds were compared, and the method was validated. The results showed that the linear ranges of the nine organic amine compounds were 0.04-25000 ng/mL with the linear correlation coefficients (R2) greater than 0.9910. The limits of detection (LODs) of the method were in the range of 0.0004-0.0080 ng/mL, and the limits of quantification (LOQs) of the method were in the range of 0.0035-0.0400 ng/mL. The average recoveries of the method ranged from 85.30% to 104.26% with relative standard deviations (RSDs) of 0.04%-7.95% at the spiked levels of 1, 1.5 and 3 times sample concentration. The established method was applied to detect the absorption waste liquid of a cement plant, and nine organic amine compounds could be effectively detected. The stability of the actual sample was tested, and the RSDs were 0.10%-6.35% in 48 h at 4 ℃. The method is sensitive, rapid and accurate for the determination of the nine organic amine compounds in industrial waste water. It can provide reference for the detection of organic amine compounds, and provide strong technical support for the research and industrial application of CO2 capture technology.

4.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675156

RESUMO

Arterial calcification is an important characteristic of cardiovascular disease. It has key parallels with skeletal mineralization; however, the underlying cellular mechanisms responsible are not fully understood. Mitochondrial dynamics regulate both bone and vascular function. In this study, we therefore examined mitochondrial function in vascular smooth muscle cell (VSMC) calcification. Phosphate (Pi)-induced VSMC calcification was associated with elongated mitochondria (1.6-fold increase, p < 0.001), increased mitochondrial reactive oxygen species (ROS) production (1.83-fold increase, p < 0.001) and reduced mitophagy (9.6-fold decrease, p < 0.01). An increase in protein expression of optic atrophy protein 1 (OPA1; 2.1-fold increase, p < 0.05) and a converse decrease in expression of dynamin-related protein 1 (DRP1; 1.5-fold decrease, p < 0.05), two crucial proteins required for the mitochondrial fusion and fission process, respectively, were noted. Furthermore, the phosphorylation of DRP1 Ser637 was increased in the cytoplasm of calcified VSMCs (5.50-fold increase), suppressing mitochondrial translocation of DRP1. Additionally, calcified VSMCs showed enhanced expression of p53 (2.5-fold increase, p < 0.05) and ß-galactosidase activity (1.8-fold increase, p < 0.001), the cellular senescence markers. siRNA-mediated p53 knockdown reduced calcium deposition (8.1-fold decrease, p < 0.01), mitochondrial length (3.0-fold decrease, p < 0.001) and ß-galactosidase activity (2.6-fold decrease, p < 0.001), with concomitant mitophagy induction (3.1-fold increase, p < 0.05). Reduced OPA1 (4.1-fold decrease, p < 0.05) and increased DRP1 protein expression (2.6-fold increase, p < 0.05) with decreased phosphorylation of DRP1 Ser637 (3.20-fold decrease, p < 0.001) was also observed upon p53 knockdown in calcifying VSMCs. In summary, we demonstrate that VSMC calcification promotes notable mitochondrial elongation and cellular senescence via DRP1 phosphorylation. Furthermore, our work indicates that p53-induced mitochondrial fusion underpins cellular senescence by reducing mitochondrial function.


Assuntos
Dinâmica Mitocondrial , Músculo Liso Vascular , Calcificação Vascular , Humanos , beta-Galactosidase/metabolismo , Células Cultivadas , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo
5.
Cell Chem Biol ; 30(2): 188-202.e6, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36720221

RESUMO

Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is a fundamental process that controls protein function and intracellular signaling. Failure of phospho-control accounts for many human diseases. While a kinase phosphorylates multiple substrates, a substrate is often phosphorylated by multiple kinases. This renders phospho-control at the substrate level challenging, as it requires inhibition of multiple kinases, which would thus affect other kinase substrates. Here, we describe the development and application of the affinity-directed phosphatase (AdPhosphatase) system for targeted dephosphorylation of specific phospho-substrates. By deploying the Protein Phosphatase 1 or 2A catalytic subunits conjugated to an antigen-stabilized anti-GFP nanobody, we can promote the dephosphorylation of two independent phospho-proteins, FAM83D or ULK1, knocked in with GFP-tags using CRISPR-Cas9, with exquisite specificity. By redirecting protein phosphatases to neo-substrates through nanobody-mediated proximity, AdPhosphatase can alter the phospho-status and function of target proteins and thus, offers a new modality for potential drug discovery approaches.


Assuntos
Proteínas Quinases , Proteína Fosfatase 2 , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Especificidade por Substrato , Monoéster Fosfórico Hidrolases/metabolismo
6.
Poult Sci ; 102(2): 102346, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493546

RESUMO

The emergence and rapid spread of multidrug resistant (MDR) Gram-negative bacteria have posed a serious threat to global health and security. Because of the time-consuming, high cost and high risk of developing new antibiotics, a significant method is to use antibiotic adjuvants to revitalize the existing antibiotics. The purpose of the study is to research the traditional Chinese medicine baicalin with the function of inhibiting the efflux pump and EDTA whether their single or combination can increase the activity of colistin against colistin-resistant Salmonella in vitro and in vivo, and to explore its molecular mechanisms. In vitro antibacterial experiments, we have observed that baicalin and EDTA alone could enhance the antibacterial activity of colistin. At the same time, the combination of baicalin and EDTA also showed a stronger synergistic effect on colistin, reversing the colistin resistance of all Salmonella strains. Molecular docking and RT-PCR results showed that the combination of baicalin and EDTA not only affected the expression of mcr-1, but also was an effective inhibitor of MCR-1. In-depth synergistic mechanism analysis revealed that baicalin and EDTA enhanced colistin activity through multiple pathways, including accelerating the tricarboxylic acid cycle (TCA cycle), inhibiting the bacterial antioxidant system and lipopolysaccharide (LPS) modification, depriving multidrug efflux pump functions and attenuating bacterial virulence. In addition, the combinational therapy of colistin, baicalin and EDTA displayed an obvious reduction in bacterial loads cfus of liver and spleen compared with monotherapy and 2-drug combination therapy. In conclusion, our study indicates that the combination of baicalin and EDTA as a novel colistin adjuvant can provide a reliable basis for formulating the therapeutic regimen for colistin resistant bacterial infection.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Ácido Edético/farmacologia , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana/veterinária , Simulação de Acoplamento Molecular , Salmonella
7.
Cell Chem Biol ; 29(10): 1482-1504.e7, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36075213

RESUMO

Proteolysis-targeting chimeras (PROTACs) bring a protein of interest (POI) into spatial proximity of an E3 ubiquitin ligase, promoting POI ubiquitylation and proteasomal degradation. PROTACs rely on endogenous cellular machinery to mediate POI degradation, therefore the subcellular location of the POI and access to the E3 ligase being recruited potentially impacts PROTAC efficacy. To interrogate whether the subcellular context of the POI influences PROTAC-mediated degradation, we expressed either Halo or FKBP12F36V (dTAG) constructs consisting of varying localization signals and tested the efficacy of their degradation by von Hippel-Lindau (VHL)- or cereblon (CRBN)-recruiting PROTACs targeting either Halo or dTAG. POIs were localized to the nucleus, cytoplasm, outer mitochondrial membrane, endoplasmic reticulum, Golgi, peroxisome or lysosome. Differentially localized Halo or FKBP12F36V proteins displayed varying levels of degradation using the same respective PROTACs, suggesting therefore that the subcellular context of the POI can influence the efficacy of PROTAC-mediated POI degradation.


Assuntos
Proteína 1A de Ligação a Tacrolimo , Ubiquitina-Proteína Ligases , Proteólise , Proteína 1A de Ligação a Tacrolimo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Biomed Res Int ; 2022: 6209047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872845

RESUMO

Materials and Methods: Three hundred sixty (n = 360) broiler chickens were equally divided into control (C) and thiram (T) groups. Furthermore, the C and T groups were dividedinto 8-, 9-, 11-, and 13-day-old chickens. Results: Clinically, it was observed that broiler chickens of group T had abnormal posture, gait, and lameness, and histopathological results revealed dead and abnormal chondrocytes of T group on day 6. Real-time qPCR results showed that HDAC1, MTA1, H4, and PCNA genes were significantly expressed (P < 0.05). HDAC1 was upregulated on days 1, 2, 4, and 6 (P < 0.01); MTA1 was upregulated on days 1 and 2 (P < 0.01); H4 was upregulated on days 2 and 4 (P < 0.01), and PCNA was downregulated on days 1, 2, and 4 (P < 0.01). Furthermore, IHC results of HDAC1 protein were significantly (P < 0.01) expressed in proliferative zone of day 1 and hypertrophic zone of day 6. MTA1 protein was significantly (P < 0.01) expressed on days 1, 2, and 6 in all zones, except prehypertrophic zone of day 2. Conclusion: In conclusion, the mRNA expressions of HDAC1, MTA1, H4, and PCNA were differentially expressed in the chondrocytes of thiram-induced TD chickens. HDAC1 and MTA1 protein expression found involved and responsible in the abnormal chondrocytes' proliferation of broiler chicken.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Proliferação de Células/genética , Galinhas/genética , Lâmina de Crescimento/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Tiram/toxicidade , Tíbia/patologia
9.
Technol Health Care ; 30(6): 1525-1533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35661029

RESUMO

BACKGROUND: Children with cerebral palsy (CP) have disorders of posture and movement and which can limit physical activities such as walkingOBJECTIVE: This study aims to investigate the effectiveness of virtual reality (VR) combined with robot-assisted gait training (RAGT) on walking ability in children with CP and clarify the most effective degree of weight reduction. METHODS: Sixty CP children were recruited and randomly allocated into four different groups. The control group received conventional physical therapy (n= 15), and task groups performed VR combined with RAGT with 15% (Group A, n= 15) /30% (Group B, n= 15) /45% (Group C, n= 15) weight loss. All participants were given 50 min of therapy per session four times a week for 12 weeks and were assessed pre-and post-test with the surface electromyography (EMG), the Modified Ashworth Scale, the Gross Motor Function Measure (GMFM) dimension E and D, and Six-Minute Walking Test (6-MWT). RESULTS: All indicators had improved significantly in each group after the intervention (P< 0.05). The result of our study demonstrated that the more effective impacts of VR combined with RAGT on walking ability compared to the control group (P< 0.05), and 30% of weight loss had the best improvement in CP children (P< 0.01). CONCLUSIONS: VR combined RAGT can effectively improve walking ability in children with CP, especially when the weight loss is 30%.


Assuntos
Paralisia Cerebral , Robótica , Realidade Virtual , Criança , Humanos , Robótica/métodos , Terapia por Exercício/métodos , Marcha , Caminhada , Redução de Peso
10.
Microbiol Spectr ; 10(1): e0196321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35170998

RESUMO

Streptococcus suis strain 1112S was isolated from a diseased pig in a feedlot from Henan, China, in 2019. The isolate harbored a linezolid resistance gene optrA. WGS data revealed that the optrA gene was associated with a single copy ETAf ISS1S, in tandem with erm(B) and tet(O), located in a novel 72,587 bp integrative and conjugative element (ICE). Notably, this novel element, designated ICESsu1112S, also carried a novel bacitracin resistance locus. ICESsu1112S could be excised from chromosome and transferred to the recipient strain S. suis P1/7 with a frequency of 5.9 × 10-6 transconjugants per donor cell. This study provided the first description of the coexistence of optrA and a novel bacitracin locus on a multiple antibiotic resistant ICE and highlighted that ICE were major vehicle and contribute to the potential transfer of clinically relevant antibiotic resistance genes. IMPORTANCE Antimicrobial resistance (AMR) caused by the imprudent use of antimicrobials has become a global problem, which poses a serious threat to treatment of S. suis infection in pigs and humans. Importantly, AMR genes can horizontally spread among commensal organisms and pathogenic microbiota, thereby accelerating the dissemination of AMR determinants. These transfers are mainly mediated by mobile genetic elements, including ICEs. In S. suis, ICEs are the major vehicles that contribute to the natural transfers of AMR genes among different bacterial pathogens. However, ICEs that carry optrA and bacitracin resistance locus are rarely investigated in S. suis isolates. Here, we investigated a S. suis isolate carrying an optrA and a novel bacitracin resistance locus, which were co-located on a novel multiple antibiotic resistant ICESsu1112S. Our study suggests that more research is needed to access the real significance of ICEs that horizontally spread clinical important resistance genes.


Assuntos
Bacitracina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Linezolida/farmacologia , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Animais , Antibacterianos/farmacologia , China , Conjugação Genética , Transferência Genética Horizontal , Genes Bacterianos , Humanos , Infecções Estreptocócicas , Streptococcus suis/isolamento & purificação , Suínos
11.
J Physiol ; 599(21): 4901-4924, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34505639

RESUMO

The late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesized that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon a glucocorticoid receptor (GR). Dexamethasone did not, however, induce mitophagy or alter the morphology of the mitochondrial network. In vivo, in neonatal mice, dexamethasone treatment induced cardiac expression of fatty acid oxidation genes. However, dexamethasone treatment of pregnant C57Bl/6 mice at embryonic day (E)13.5 or E16.5 failed to induce fatty acid oxidation genes in fetal hearts assessed 24 h later. Instead, at E17.5, fatty acid oxidation genes were downregulated by dexamethasone, as was GR itself. PGC-1α, required for glucocorticoid-induced maturation of primary mouse fetal cardiomyocytes in vitro, was also downregulated in fetal hearts at E17.5, 24 h after dexamethasone administration. Similarly, following a course of antenatal corticosteroids in a translational sheep model of preterm birth, both GR and PGC-1α were downregulated in heart. These data suggest that endogenous glucocorticoids support the perinatal switch to fatty acid oxidation in cardiomyocytes through changes in gene expression rather than gross changes in mitochondrial volume or mitochondrial turnover. Moreover, our data suggest that treatment with exogenous glucocorticoids may interfere with normal fetal heart maturation, possibly by downregulating GR. This has implications for clinical use of antenatal corticosteroids when preterm birth is considered a possibility. KEY POINTS: Glucocorticoids are steroid hormones that play a vital role in late pregnancy in maturing fetal organs, including the heart. In fetal cardiomyocytes in culture, glucocorticoids promote mitochondrial fatty acid oxidation, suggesting they facilitate the perinatal switch from carbohydrates to fatty acids as the predominant energy substrate. Administration of a synthetic glucocorticoid in late pregnancy in mice downregulates the glucocorticoid receptor and interferes with the normal increase in genes involved in fatty acid metabolism in the heart. In a sheep model of preterm birth, antenatal corticosteroids (synthetic glucocorticoid) downregulates the glucocorticoid receptor and the gene encoding PGC-1α, a master regulator of energy metabolism. These experiments suggest that administration of antenatal corticosteroids in anticipation of preterm delivery may interfere with fetal heart maturation by downregulating the ability to respond to glucocorticoids.


Assuntos
Glucocorticoides , Nascimento Prematuro , Animais , Dexametasona/farmacologia , Ácidos Graxos , Feminino , Coração Fetal , Glucocorticoides/farmacologia , Camundongos , Miócitos Cardíacos , Gravidez , Receptores de Glucocorticoides/genética , Ovinos
12.
Res Vet Sci ; 136: 25-31, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578291

RESUMO

Pathogenicity of tibial dyschondroplasia (TD) in broiler chickens is not detected yet. Janus Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway-related genes were investigated in thiram induced TD chickens. Real-time qPCR and immunohistochemical (IHC) technique were used to observe the expression changes of STAT3 and SOSC3 gene on days 1, 2, 4, 6 after feeding 100 mg·kg-1 thiram. Morphological, pathological, and histological results of this study suggested that chondrocyte cells were observed more damaged on day 6 than day 1, 2, and 4. Therefore, Lameness and damaged chondrocytes gradually increased from day 1 to 6. The mRNA expression level of STAT3 was observed insignificant (P > 0.05) in thiram induced TD chickens' group of day 1. However, on days 2, 4, and 6, the expression was significant (P < 0.05). SOCS3 increased in thiram group on days 1, 2 and 6, decreased on day 4 (P < 0.05). The p-STAT3 and SOCS3 protein's protein localization was evaluated in the control and thiram-induced TD broiler chickens through IHC, suggesting that SOSC3 protein was observed significantly higher on days 1, 2, and 6 and down-regulated on day 4. p-STAT3 protein on thiram induced group was observed significantly upregulated on days 4 and 6. In conclusion, the differential expression of STAT3 and SOCS3 showed that the JAK-STAT signaling pathway might play an important role in regulating an abnormal proliferation, differentiation, or apoptosis of chondrocytes in TD at an early stage.


Assuntos
Galinhas/genética , Janus Quinases/metabolismo , Osteocondrodisplasias/veterinária , Doenças das Aves Domésticas/genética , Fator de Transcrição STAT3/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Tíbia/metabolismo , Animais , Apoptose , Condrócitos/metabolismo , Regulação para Baixo , Lâmina de Crescimento , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/enzimologia , Osteocondrodisplasias/genética , Doenças das Aves Domésticas/enzimologia , RNA Mensageiro , Transdução de Sinais , Tiram
13.
Cell Stress ; 4(5): 99-113, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32420530

RESUMO

Mitophagy is thought to play a key role in eliminating damaged mitochondria, with diseases such as cancer and neurodegeneration exhibiting defects in this process. Mitophagy is also involved in cell differentiation and maturation, potentially through modulating mitochondrial metabolic reprogramming. Here we examined mitophagy that is induced upon iron chelation and found that the transcriptional activity of HIF1α, in part through upregulation of BNIP3 and NIX, is an essential mediator of this pathway in SH-SY5Y cells. In contrast, HIF1α is dispensable for mitophagy occurring upon mitochondrial depolarisation. To examine the role of this pathway in a metabolic reprogramming and differentiation context, we utilised the H9c2 cell line model of cardiomyocyte maturation. During differentiation of these cardiomyoblasts, mitophagy increased and required HIF1α-dependent upregulation of NIX. Though HIF1α was essential for expression of key cardiomyocyte markers, mitophagy was not directly required. However, enhancing mitophagy through NIX overexpression, accelerated marker gene expression. Taken together, our findings provide a molecular link between mitophagy signalling and cardiomyocyte differentiation and suggest that although mitophagy may not be essential per se, it plays a critical role in maintaining mitochondrial integrity during this energy demanding process.

14.
Redox Biol ; 30: 101433, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31972507

RESUMO

Studies revealed that the use of renin-angiotensin-aldosterone system antagonism is not associated with a statistically significant reduction in the risk of cardiovascular events in patients with chronic kidney disease (CKD) compared with that in the general population. We tested the hypothesis that indoxyl sulfate (IS) can interfere with the protective effect of valsartan-mediated on endothelial function in vitro and neovascularization in mice underwent subtotal nephrectomy. In human aortic endothelial cells, we first demonstrated that IS impaired the valsartan-mediated phosphorylation of eNOSThr495, nitric oxide production and tube formation via NADPH oxidase (NOX) and protein kinase C (PKC) phosphorylation, but this effect was suppressed by cotreatment with apocynin and calphostin C. In vivo, IS attenuated valsartan-induced angiogenesis in Matrigel plugs in mice. Moreover, in subtotal nephrectomy mice who underwent hindlimb ischemic surgery, valsartan significantly increased the mobilization of endothelial progenitor cells in circulation as well as the reperfusion of blood flow and density of CD31+ capillaries in ischemic limbs. However, IS attenuated the protective effect of valsartan-induced neovascularization and increased the expression of p-PKCαSer657 and p-eNOSThr497 in ischemic limbs. Cotreatment of apocynin and calphostin C reversed the IS impaired-neovascularization and decreased the expression of p-PKCαSer657 and p-eNOSThr497 in ischemic limbs. Our study suggests that the NOX/PKC/eNOS signaling pathway plays a pivotal role in the IS-mediated inhibition of valsartan-conferred beneficial effects on endothelial function in vitro and neovascularization in subtotal nephrectomy mice. We proposed a novel causative role for IS in cardiovascular complications in CKD patients.


Assuntos
Indicã/efeitos adversos , Isquemia/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Nefrectomia/efeitos adversos , Valsartana/administração & dosagem , Animais , Linhagem Celular , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Humanos , Isquemia/etiologia , Isquemia/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Valsartana/farmacologia
15.
Free Radic Biol Med ; 143: 354-365, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437479

RESUMO

BACKGROUND: Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase inhibitor and has been proposed to be an independent risk factor for cardiovascular diseases. However, little is known about its role in the regulation of lipid metabolism. In this study, we investigated the effect of ADMA on cholesterol metabolism and its underlying molecular mechanism. METHODS: Oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cells were used as an in vitro model. Apolipoprotein E-deficient (apoE-/-) hyperlipidemic mice were used as an in vivo model. Western blot analysis was used to evaluate protein expression. Luciferase reporter assays were used to assess the activity of promoters and transcription factors. Conventional assay kits were used to measure the levels of ADMA, cholesterol, triglycerides, and cytokines. RESULTS: Treatment with oxLDL decreased the protein expression of dimethylarginine dimethylaminohydrolase-2 (DDAH-2) but not DDAH-1. Incubation with ADMA markedly increased oxLDL-induced lipid accumulation in macrophages. ADMA impaired cholesterol efflux following oxLDL challenge and downregulated the expression of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 by interfering with liver X receptor α (LXRα) expression and activity. Additionally, this inhibitory effect of ADMA on cholesterol metabolism was mediated through the activation of the NADPH oxidase/reactive oxygen species pathway. In vivo experiments revealed that chronic administration of ADMA for 4 weeks exacerbated systemic inflammation, decreased the aortic protein levels of ABCA1 and ABCG1, and impaired the capacity of reverse cholesterol transport, ultimately, leading to the progression of atherosclerosis in apoE-/- mice. CONCLUSION: Our findings suggest that the ADMA/DDAH-2 axis plays a crucial role in regulating cholesterol metabolism in macrophage foam cells and atherosclerotic progression.


Assuntos
Arginina/análogos & derivados , Colesterol/metabolismo , Células Espumosas/patologia , Hiperlipidemias/etiologia , Macrófagos/patologia , NADPH Oxidase 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Amidoidrolases/metabolismo , Animais , Arginina/farmacologia , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , NADPH Oxidase 1/genética , Triglicerídeos/metabolismo
16.
Front Microbiol ; 10: 1399, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293544

RESUMO

Enterocytozoon bieneusi, an obligate intracellular pathogen, can infect various hosts. In this study, 3527 dairy cattle fecal specimens were collected from different geographic locations in China (including 673 from Shandong province, 1,440 from Guangdong province and 1,414 from Gansu province) and examined for the presence of E. bieneusi using polymerase chain reactions targeting the ribosomal internal transcribed spacer (ITS). The dominant genotypes identified were further subtyped by multilocus sequence typing. The overall prevalence of E. bieneusi was 14.2% (501/3527), with a significant difference in prevalence among the different geographical locations (P < 0.001). Our logistic regression analysis showed that all four variables (farming model, location, age, and clinical manifestations) had strong effects on the risk of contracting E. bieneusi. Sequence analysis revealed 11 genotypes: eight known genotypes (J, I, BEB4, BEB10, D, EbpC, CM19, and CM21) and three novel genotypes (named here as CGC1, CGC2, and CGC3). Genotypes J and I, the commonest, were found on all farms across the three provinces. Our linkage disequilibrium analysis showed a clonal population structure in the E. bieneusi dairy cattle population but the ITS genotypes had different population structures. Phylogenetic and haplotype network analysis showed the absence of geographical segregation in the E. bieneusi dairy cattle populations. Instead, they revealed the presence of host adaptation to the E. bieneusi populations in various animals. Our findings augment the current understanding of E. bieneusi transmission dynamics.

17.
J Antimicrob Chemother ; 74(6): 1511-1516, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30820562

RESUMO

BACKGROUND: IS26-flanked transposons played an increasingly important part in the mobilization and development of resistance determinants. Heterogeneous resistance-encoding plasmid clusters with polymorphic MDR regions (MRRs) conferred by IS26 in an individual Escherichia coli isolate have not yet been detected. OBJECTIVES: To characterize the complete sequence of a novel blaCTX-M-65- and fosA3-carrying IncZ-7 plasmid with dynamic MRRs from an E. coli isolate, and to depict the mechanism underlying the spread of resistance determinants and genetic polymorphisms. METHODS: The molecular characterization of a strain carrying blaCTX-M-65 and fosA3 was analysed by antimicrobial susceptibility testing and MLST. The transferability of a plasmid bearing blaCTX-M-65 and fosA3 was determined by conjugation assays, and the complete structure of the plasmid was obtained by Illumina, PacBio and conventional PCR mapping, respectively. The circular forms derived from IS26-flanked transposons were detected by reverse PCR and sequencing. RESULTS: A novel IncZ-7 plasmid pEC013 (∼118kb) harbouring the blaCTX-M-65 and fosA3 genes was recovered from E. coli isolate EC013 belonging to D-ST117. The plasmid was found to have heterogeneous and dynamic MRRs in an individual strain and the IS26-flanked composite transposon-derived circular intermediates were identified and characterized in pEC013. CONCLUSIONS: The heterogeneous MRRs suggested that a single plasmid may actually be a cluster of plasmids with the same backbone but varied MRRs, reflecting the plasmid's heterogeneity and the survival benefits of having a response to antimicrobial-related threatening conditions in an individual strain.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/classificação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana
18.
Acta Physiol (Oxf) ; 225(3): e13209, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30347516

RESUMO

AIM: CCN family member 1 (CCN1) is an extracellular matrix cytokine and appears in atherosclerotic lesions. However, we have no evidence to support the role of CCN1 in regulating cholesterol metabolism and atherosclerosis. METHODS: Apolipoprotein E-deficient (apoE-/- ) mice were used as in vivo model. Oxidized low-density lipoprotein (oxLDL)-induced macrophage-foam cells were used as in vitro model. RT-PCR and western blot analysis were used for evaluating gene and protein expression, respectively. Conventional assay kits were used for assessing the levels of cholesterol, triglycerides, and cytokines. RESULTS: We show predominant expression of CCN1 in foamy macrophages in atherosclerotic aortas of apoE-/- mice. In apoE-/- mice, CCN1 treatment worsened hyperlipidaemia, systemic inflammation, and the progression of atherosclerosis. In addition, CCN1 decreased the capacity of reverse cholesterol transport and downregulated the protein expression of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 in atherosclerotic aortas. Notably, CCN1 decreased the protein expression of cholesterol clearance-related proteins, including ABCG5, ABCG8, liver X receptor α (LXRα), cholesterol 7α-hydrolase and LDL receptor in liver, and exacerbated hepatic lipid accumulation. In macrophages, treatment with oxLDL increased CCN1 expression. Inhibition of CCN1 activity by neutralizing antibody or small interfering RNA attenuated the oxLDL-induced lipid accumulation. In contrast, cotreatment with CCN1 or overexpression of CCN1 augmented oxLDL-induced lipid accumulation by impairing apolipoprotein AI- and high-density lipoprotein-dependent cholesterol efflux, which was attributed to downregulation of LXRα-dependent expression of ABCA1 and ABCG1. CONCLUSION: Our findings suggest that CCN1 plays a pivotal role in regulating cholesterol metabolism and the development of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Colesterol/genética , Proteína Rica em Cisteína 61/genética , Células Espumosas/citologia , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Colesterol/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Macrófagos/metabolismo , Camundongos Knockout
19.
Clin Exp Hypertens ; 39(8): 726-731, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640647

RESUMO

This study aimed to evaluate the effect of PRKCH rs2230500 genetic polymorphism on efficacy of amlodipine and telmisartan for patients with hypertension. A total of 136 essential hypertension (EH) patients were treated with amlodipine (70 patients) or telmisartan (66 patients), respectively. Genetic polymorphism was genotyped by Sanger sequencing. Both baseline and post-treatment blood pressure (BP) and heart rate were measured to evaluate the influence of genetic polymorphism on the antihypertensive response. No significant difference in the absolute decrease in diastolic blood pressure (DBP),systolic blood pressure (SBP), and mean arterial pressure (MAP) was observed among PRKCH rs2230500 genotypes after 4-week amlodipine or telmisartan therapy (p > 0.05). However, when compared with carriers or GG genotype, the antihypertensive effect of PRKCH rs2230500 GA/AA carriers was superior in telmisartan treatment group. PRKCH rs2230500 gene polymorphism is significantly related to the efficiency in telmisartan therapy (p = 0.02). The PRKCH rs2230500 may influence the antihypertensive efficacy of telmisartan in Chinese EH patients, and further studies are needed to confirm these findings.


Assuntos
Anlodipino/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Benzimidazóis/uso terapêutico , Benzoatos/uso terapêutico , Hipertensão Essencial/tratamento farmacológico , Hipertensão Essencial/genética , Proteína Quinase C/genética , Adulto , Idoso , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/genética , Povo Asiático , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/genética , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Telmisartan
20.
Tumour Biol ; 39(6): 1010428317705761, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28635396

RESUMO

Osteosarcoma is a common primary malignant bone tumor that occurs mainly in children and adolescents. Recent evidence has demonstrated that miR-34a is involved in the invasion and metastasis of osteosarcoma. This study aims to explore the effect of biological behavior of miR-34a on osteosarcoma. First, we collect osteosarcoma and adjacent specimens, and the relative expression of miR-34a and C-IAP2 messenger RNA was quantitated by real-time polymerase chain reaction. Furthermore, miR-34a stimulant is synthesized and transfected onto osteosarcoma MG-63 cells. The effect of overexpression of miR-34a on osteosarcoma was detected by colony-forming assay, Annexin V-fluorescein isothiocyanate Apoptosis Detection Kit I, Transwell assay, and animal experiment in vivo. Finally, the relative levels of C-IAP2 and Bcl-2 protein were checked by western blot, and the activity of caspase-3 and caspase-9 was tested by spectrophotometry assay. In conclusion, miR-34a was downregulated in osteosarcoma cells. And the expression of C-IAP2 and Bcl-2 protein was drastically inhibited, and the activities of caspase-3 and caspase-9 were significantly increased after transfecting miR-34a onto osteosarcoma MG-63 cells. And the overexpression of miR-34a can inhibit cell invasion and metastasis, promote cell apoptosis, and arrest cells in G0/G1 period. And the animal experiment in vivo demonstrated that the overexpression of miR-34a could significantly inhibit the growth of osteosarcoma in animal skin. Taken together, we indicated that miR-34a can inhibit tumor invasion and metastasis in osteosarcoma, and its mechanism may be partly related to downregulating the expression of C-IAP2 and Bcl-2 protein directly or indirectly.


Assuntos
Proteínas Inibidoras de Apoptose/genética , MicroRNAs/genética , Osteossarcoma/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Apoptose/genética , Caspase 3/genética , Caspase 9/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/biossíntese , Camundongos , MicroRNAs/biossíntese , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...