Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785692

RESUMO

This study presents a biosensor fabricated based on integrated passive device (IPD) technology to measure microbial growth on solid media in real-time. Yeast (Pichia pastoris, strain GS115) is used as a model organism to demonstrate biosensor performance. The biosensor comprises an interdigital capacitor in the center with a helical inductive structure surrounding it. Additionally, 12 air bridges are added to the capacitor to increase the strength of the electric field radiated by the biosensor at the same height. Feasibility is verified by using a capacitive biosensor, and the change in capacitance values during the capacitance detection process with the growth of yeast indicates that the growth of yeast can induce changes in electrical parameters. The proposed IPD-based biosensor is used to measure yeast drop-added on a 3 mm medium for 100 h at an operating frequency of 1.84 GHz. The resonant amplitude of the biosensor varies continuously from 24 to 72 h due to the change in colony height during vertical growth of the yeast, with a maximum change of 0.21 dB. The overall measurement results also fit well with the Gompertz curve. The change in resonant amplitude between 24 and 72 h is then analyzed and reveals a linear relationship with time with a coefficient of determination of 0.9844, indicating that the biosensor is suitable for monitoring yeast growth. Thus, the proposed biosensor is proved to have potential in the field of microbial proliferation detection.


Assuntos
Técnicas Biossensoriais , Leveduras/crescimento & desenvolvimento
2.
Front Bioeng Biotechnol ; 12: 1398189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803847

RESUMO

Cytotoxicity assays are crucial for assessing the efficacy of drugs in killing cancer cells and determining their potential therapeutic value. Measurement of the effect of drug concentration, which is an influence factor on cytotoxicity, is of great importance. This paper proposes a cytotoxicity assay using microwave sensors in an end-point approach based on the detection of the number of live cells for the first time. In contrast to optical methods like fluorescent labeling, this research uses a resonator-type microwave biosensor to evaluate the effects of drug concentrations on cytotoxicity by monitoring electrical parameter changes due to varying cell densities. Initially, the feasibility of treating cells with ultrapure water for cell counting by a microwave biosensor is confirmed. Subsequently, inhibition curves generated by both the CCK-8 method and the new microwave biosensor for various drug concentrations were compared and found to be congruent. This agreement supports the potential of microwave-based methods to quantify cell growth inhibition by drug concentrations.

3.
Biosensors (Basel) ; 14(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38667173

RESUMO

Since different quantities of white blood cells (WBCs) in solution possess an adaptive osmotic pressure of cells, the WBCs themselves and in solution have similar concentrations, resulting in them having similar dielectric properties. Therefore, a microwave sensor could have difficulty in sensing the quantity variation when WBCs are in solution. This paper presents a highly sensitive, linear permittivity-inspired microwave biosensor for WBCs, counting through the evaporation method. Such a measurement method is proposed to record measurements after the cell solution is dripped onto the chip and is completely evaporated naturally. The proposed biosensor consists of an air-bridged asymmetric differential inductor and a centrally located circular fork-finger capacitor fabricated on a GaAs substrate using integrated passive fabrication technology. It is optimized to feature a larger sensitive area and improved Q-factor, which increases the effective area of interaction between cells and the electromagnetic field and facilitates the detection of their changes in number. The sensing relies on the dielectric properties of the cells and the change in the dielectric constant for different concentrations, and the change in resonance properties, which mainly represents the frequency shift, corresponds to the macroscopic change in the concentration of the cells. The microwave biosensors are used to measure biological samples with concentrations ranging from 0.25 × 106 to 8 × 106 cells per mL in a temperature (26.00 ± 0.40 °C) and humidity (54.40 ± 3.90 RH%) environment. The measurement results show a high sensitivity of 25.06 Hz/cells·mL-1 with a highly linear response of r2 = 0.99748. In addition, a mathematical modeling of individual cells in suspension is performed to estimate the dielectric constant of individual cells and further explain the working mechanism of the proposed microwave biosensor.


Assuntos
Técnicas Biossensoriais , Humanos , Contagem de Leucócitos , Leucócitos/citologia , Micro-Ondas
4.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396983

RESUMO

Oats (Avena sativa) are an important cereal crop and cool-season forage worldwide. Heat shock protein 90 (HSP90) is a protein ubiquitously expressed in response to heat stress in almost all plants. To date, the HSP90 gene family has not been comprehensively reported in oats. Herein, we have identified twenty HSP90 genes in oats and elucidated their evolutionary pathways and responses to five abiotic stresses. The gene structure and motif analyses demonstrated consistency across the phylogenetic tree branches, and the groups exhibited relative structural conservation. Additionally, we identified ten pairs of segmentally duplicated genes in oats. Interspecies synteny analysis and orthologous gene identification indicated that oats share a significant number of orthologous genes with their ancestral species; this implies that the expansion of the oat HSP90 gene family may have occurred through oat polyploidization and large fragment duplication. The analysis of cis-acting elements revealed their influential role in the expression pattern of HSP90 genes under abiotic stresses. Analysis of oat gene expression under high-temperature, salt, cadmium (Cd), polyethylene glycol (PEG), and abscisic acid (ABA) stresses demonstrated that most AsHSP90 genes were significantly up-regulated by heat stress, particularly AsHSP90-7, AsHSP90-8, and AsHSP90-9. This study offers new insights into the amplification and evolutionary processes of the AsHSP90 protein, as well as its potential role in response to abiotic stresses. Furthermore, it lays the groundwork for understanding oat adaptation to abiotic stress, contributing to research and applications in plant breeding.


Assuntos
Avena , Grão Comestível , Avena/genética , Avena/metabolismo , Grão Comestível/genética , Filogenia , Genoma de Planta , Melhoramento Vegetal , Estresse Fisiológico/genética , Proteínas de Choque Térmico HSP90/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
5.
Adv Sci (Weinh) ; 11(15): e2304879, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342632

RESUMO

In the current prevalent complex electromagnetic (EM) environment, intelligent methods for versatile and integrated control of EM waves using compact devices are both essential and challenging. These varied wave control objectives can at times conflict with one another, such as the need for broad absorption to remain inconspicuous, while also requiring enhanced backward scattering for highly reliable tracing and secure communication. To address these sophisticated challenges, a microwave-frequency reconfigurable tri-mode metasurface (RTMM) is introduced. The proposed innovation enables three distinct operational modes: broadband low observation, enhanced EM wave tracing, and backscatter communication over a wide-angle range by simple control of the PIN diodes embedded in each meta-atom. The proof-of-concept demonstration of the fabricated prototype verified the switchable tri-mode performance of the RTMM. This proposed RTMM can be adapted to various applications, including EM shielding, target detection, and secure communication in complex and threatening EM environments, paving the way for environmentally-adaptive EM wave manipulation.

6.
Micromachines (Basel) ; 14(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38004863

RESUMO

With the increasing demand for the miniaturization and flexibility of optical devices, graphene-based metasurfaces have emerged as a promising ideal design platform for realizing planar and tunable electromagnetic or optical devices. In this paper, we propose a tunable metasurface with low-dispersion phase gradient characteristics that is composed of an array of double-layer graphene ribbons sandwiched with a thin insulating layer and a polymer substrate layer with a gold ground plane. As two typical proof-of-concept examples, metasurfaces act as a planar prism and a planar lens, respectively, and the corresponding performances of tunable broadband dispersion are demonstrated through full-wave simulation experiments. By changing the Fermi level of each graphene ribbon individually to introduce abrupt phase shifts along the metasurface, the broadband continuous dispersion effect of abnormal reflection and beam focusing is achieved within a terahertz (THz) frequency region from 3.0 THz to 4.0 THz, and the dispersion results can be freely regulated by reconfiguring the sequence of Fermi levels via the bias voltage. The presented graphene metasurface provides an avenue for the dispersion manipulation of a broadband terahertz wave and may have great prospects in the fields of optics, imaging, and wireless communication.

7.
Genes (Basel) ; 14(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37895223

RESUMO

As a C4 warm-season turfgrass, centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is known for its exceptional resilience to intensive maintenance practices. In this research, the most stably expressed reference genes in the leaves of centipedegrass under different stress treatments, including salt, cold, drought, aluminum (Al), and herbicide, were screened by the quantitative real-time PCR (RT-qPCR) technique. The stability of 13 candidate reference genes was evaluated by software GeNorm V3.4, NormFinder V20, BestKeeper V1.0, and ReFinder V1.0. The results of this experiment demonstrated that the expression of the UBC (ubiquitin-conjugating enzyme) remained the most stable under cold and Al stress conditions. On the other hand, the MD (malate dehydrogenase) gene exhibited the best performance in leaf tissues subjected to salt and drought stresses. Under herbicide stress, the expression level of the RIP (60S ribosomal protein L2) gene ranked the highest. The expression levels of abiotic stress-associated genes such as PIP1, PAL, COR413, ALMT9, and BAR were assessed to validate the reliability of the selected reference genes. This study provides valuable information and reference points for gene expression under abiotic stress conditions in centipedegrass.


Assuntos
Genes de Plantas , Herbicidas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Cloreto de Sódio , Perfilação da Expressão Gênica
8.
Opt Express ; 31(16): 25613-25624, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710443

RESUMO

Polarization manipulation is a key issue in electromagnetic (EM) research. Research on 90° polarization rotators and circularly-polarized wave generators has been widely conducted. In this study, a polarization conversion metasurface that can shift one linearly-polarized EM wave into multi-polarization outgoing waves at certain frequencies is demonstrated, including co-, cross-, left-hand, and right-hand circular-polarization components. The surface was made of periodically arranged chiral meta-atoms. The polarization manipulation method is based on the independent control of phase and magnitude, in which the phase control is based on the Berry-phase theory of linearly-polarized EM waves, while the magnitude control is based on the cavity mode theory of the microstrip structure. Both eigenmode analysis (EMA) and characteristic mode analysis (CMA) were utilized for magnitude control, which was further verified by the surface current distribution. Finally, the metasurface was fabricated and measured, showing good agreement between the measured and simulated results. This research proposed what we believe to be a novel polarization method, which can be potentially applied in polarization manipulation, EM radiation, filters, wireless sensors, etc., over a frequency range from optics to microwave bands.

9.
Opt Express ; 31(18): 28979-28986, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710706

RESUMO

Recently, reconfigurable polarization-manipulation metasurfaces controlled with active components have gained widespread interest due to their adaptability, compact configuration, and low cost. However, due to the inherent non-negligible ohmic loss, the output energy of these tunable metasurfaces is typically diminished, particularly in the microwave region. To surmount the loss problem, herein, we propose an active polarization-converting metasurface with non-reciprocal polarization responses that is integrated with amplifying transistors. In addition, we provide a design strategy for a polarizer that is insensitive to polarization and has energy amplification capabilities. Experiments are conducted in the microwave region, and amplification of the polarization-converting behaviors is observed around 3.95 GHz. The proposed metasurface is prospective for applications in future wireless communication systems, such as spatial isolation, signal enhancement, and electromagnetic environment shaping.

10.
PeerJ ; 11: e15900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641603

RESUMO

Centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is commonly used as a low-maintenance warm-season turfgrass owing to its excellent adaptation to various soil types. A better understanding of the genetic diversity pattern of centipedegrass is essential for the efficient development and utilization of accessions. This study used fifty-five pairs of primers to detect the genetic variation and genetic structure of twenty-three wild centipedegrass accessions by Sequence-related amplified polymorphism (SRAP) markers. A total of 919 reliable bands were amplified, among which 606 (65.80%) were polymorphic and 160 (2.91%) were the monomorphic loci. The average polymorphic information content (PIC) value was 0.228. The unweighted pair group method with arithmetic mean (UPGMA) clustering analysis grouped the twenty-three accessions into two clusters. Meanwhile, the structure analysis showed that the tested accessions possessed two main genetic memberships (K = 2). The Mantel test significantly correlated the genetic and geographic distance matrices (r = 0.3854, p = 0.000140). Furthermore, geographical groups showed moderate genetic differentiation, and the highest intragroup genetic diversity was found in the Sichuan group (He = 0.201). Overall, the present research findings could promote the protection and collection of centipedegrass and provide comprehensive information to develop novel breeding strategies.


Assuntos
Melhoramento Vegetal , Polimorfismo Genético , Polimorfismo Genético/genética , Deriva Genética , Aclimatação , Análise por Conglomerados
11.
Front Plant Sci ; 14: 1170004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554563

RESUMO

Hordeum L. is widely distributed in mountain or plateau of subtropical and warm temperate regions around the world. Three wild perennial Hordeum species, including H. bogdanii, H. brevisubulatum, and H. violaceum, have been used as forage and for grassland ecological restoration in high-altitude areas in recent years. To date, the degree of interspecies sequence variation in the three Hordeum species within existing gene pools is still not well-defined. Herein, we sequenced and assembled chloroplast (cp) genomes of the three species. The results revealed that the cp genome of H. bogdanii showed certain sequence variations compared with the cp genomes of the other two species (H. brevisubulatum and H. violaceum), and the latter two were characterized by a higher relative affinity. Parity rule 2 plot (PR2) analysis illuminated that most genes of all ten Hordeum species were concentrated in nucleotide T and G. Numerous single nucleotide polymorphism (SNP) and insertion/deletion (In/Del) events were detected in the three Hordeum species. A series of hotspots regions (tRNA-GGU ~ tRNA-GCA, tRNA-UGU ~ ndhJ, psbE ~ rps18, ndhF ~ tRNA-UAG, etc.) were identified by mVISTA procedures, and the five highly polymorphic genes (tRNA-UGC, tRNA-UAA, tRNA-UUU, tRNA-UAC, and ndhA) were proved by the nucleotide diversity (Pi). Although the distribution and existence of cp simple sequence repeats (cpSSRs) were predicted in the three Hordeum cp genomes, no rearrangement was found between them. A similar phenomenon has been found in the cp genome of the other seven Hordeum species, which has been published so far. In addition, evolutionary relationships were reappraised based on the currently reported cp genome of Hordeum L. This study offers a framework for gaining a better understanding of the evolutionary history of Hordeum species through the re-examination of their cp genomes, and by identifying highly polymorphic genes and hotspot regions that could provide important insights into the genetic diversity and differentiation of these species.

12.
Opt Express ; 31(14): 23294-23308, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475417

RESUMO

In this paper, an actively tunable rasorber with broadband RCS reduction and low infrared emissivity is proposed. The rasorber can achieve flexible control of the peak of the transmission frequency and make the platform invisible in multiple spectrum. Based on the combination of varactor diodes and bandpass frequency-selective surface (FSS), the transmission window can be continuously tuned from 1.8 to 4.5 GHz. The designed rasorber has more than 10 dB RCS reduction from 5.4 to 14.1 GHz. Furthermore, an infrared low emissivity layer based on ITO resistance film is added above the rasorber, and the average infrared emissivity of the measured surface is 0.33. The experimental and simulation results are in good agreement. This work is expected to be applied to frequency hopping secure communication and ultra-wideband, multi-spectrum stealth.

13.
Plants (Basel) ; 12(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514333

RESUMO

Drought is one of the most significant limiting factors affecting plant growth and development on the Qinghai-Tibet Plateau (QTP). Mining the drought-tolerant genes of the endemic perennial grass of the QTP, Siberian wildrye (Elymus sibiricus), is of great significance to creating new drought-resistant varieties which can be used in the development of grassland livestock and restoring natural grassland projects in the QTP. To investigate the transcriptomic responsiveness of E. sibiricus to drought stress, PEG-induced short- and long-term drought stress was applied to two Siberian wildrye genotypes (drought-tolerant and drought-sensitive accessions), followed by third- and second-generation transcriptome sequencing analysis. A total of 40,708 isoforms were detected, of which 10,659 differentially expressed genes (DEGs) were common to both genotypes. There were 2107 and 2498 unique DEGs in the drought-tolerant and drought-sensitive genotypes, respectively. Additionally, 2798 and 1850 DEGs were identified in the drought-tolerant genotype only under short- and long-term conditions, respectively. DEGs numbering 1641 and 1330 were identified in the drought-sensitive genotype only under short- and long-term conditions, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that all the DEGs responding to drought stress in E. sibiricus were mainly associated with the mitogen-activated protein kinase (MAKP) signaling pathway, plant hormone signal transduction, the linoleic acid metabolism pathway, the ribosome pathway, and plant circadian rhythms. In addition, Nitrate transporter 1/Peptide transporter family protein 3.1 (NPF3.1) and Auxin/Indole-3-Acetic Acid (Aux/IAA) family protein 31(IAA31) also played an important role in helping E. sibiricus resist drought. This study used transcriptomics to investigate how E. sibiricus responds to drought stress, and may provide genetic resources and references for research into the molecular mechanisms of drought resistance in native perennial grasses and for breeding drought-tolerant varieties.

14.
Heliyon ; 9(7): e17638, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449194

RESUMO

Directional hydraulic fracturing (DHF) is more and more widely used in coal mines in China for hard roof and coal burst control. The key to this technology is to determine the crack initiation pressure that affected by the shape of the artificial notch and the stress state around the fracturing hole. Reasonable and simple formula for fracturing pressure calculation is essential since the fracturing pump used in coal mines is usually limited by the harsh conditions and hardly replaced once selected. Based on the superposition principle, the simplified 2D model of DHF was established as the elliptical hole with the internal pressure and solved by using the complex functions method. The analytical solution of tangential stress on the inner surface was obtained meanwhile the corresponding criterion of fracturing pressure can be set up. Considering the characteristics of DHF in coal mines, we further got a simplified formula that controlled by the ratio of major to minor axis of the ellipse-like notch, the ratio of the minimum to the maximum principal stress, as well as the tensile strength of the rock. The formula also gave a guide to the design of the notch that major diameter should be at least twice the minor diameter, and the optimal solution for the ratio is to 2~4 and recommended 4, which can resist the initiation pressure to a large extent affected by the in-situ stress. Once the pressure of the fracturing fluid is high enough to satisfy the equation cracks would arise at the tips of the notch along the major axis which belongs to mode Ⅰ crack and would grow unsteadily and rapidly. A PFC simulation model was used to verify the analysis, the results of which are very consistent with the theoretical solutions.

15.
ACS Appl Mater Interfaces ; 15(22): 27380-27390, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224443

RESUMO

Janus metasurfaces, a category of two-faced two-dimensional (2D) materials, are emerging as a promising platform for designing multifunctional metasurfaces by exploring the intrinsic propagation direction (k-direction) of electromagnetic waves. Their out-of-plane asymmetry is utilized for achieving distinct functions selectively excited by choosing the propagation directions, providing an effective strategy to meet the growing demand for the integration of more functionalities into a single optoelectronic device. Here, we propose the concept of direction-duplex Janus metasurface for full-space wave control yielding drastically different transmission and reflection wavefronts for the same polarized incidence with opposite k-directions. A series of Janus metasurface devices that enable asymmetric full-space wave manipulations, such as integrated metalens, beam generators, and fully direction-duplex meta-holography, are experimentally demonstrated. We envision the Janus metasurface platform proposed here to open new possibilities toward a broader exploration of creating sophisticated multifunctional meta-devices ranging from microwaves to optical systems.

16.
Adv Mater ; 35(26): e2300659, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942913

RESUMO

Traditional honeycomb-like structural electromagnetic (EM)-wave-absorbing materials have been widely used in various equipment as multifunctional materials. However, current EM-wave-absorbing materials are limited by narrow absorption bandwidths and incidence angles because of their anisotropic structural morphology. The work presented here proposes a novel EM-wave-absorbing metastructure with an isotropic morphology inspired by the gyroid microstructures seen in Parides sesostris butterfly wings. A matching redesign methodology between the material and subwavelength scale properties of the gyroid microstructure is proposed, inspired by the interaction mechanism between the microstructure and the material properties on the EM-wave-absorption performance of the prepared metastructure. The bioinspired metastructure is fabricated by additive manufacturing (AM) and subsequent coating through dipping processes, filled with dielectric lossy materials. Based on simulations and experiments, the metastructure designed in this work exhibits an ultrawide absorption bandwidth covering the frequency range of 2-40 GHz with a fractional bandwidth of 180% at normal incidence. Moreover, the metastructure has a stable frequency response when the incident angle is 60° under transverse electric (TE) and transverse magnetic (TM) polarization. Finally, the synergistic mechanism between the microstructure and the material is elucidated, which provides a new paradigm for the design of novel ultra-broadband EM-absorbing materials.

17.
Opt Express ; 31(2): 1330-1339, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785170

RESUMO

Airy beams, accelerating optical beams with exotic properties of self-bending, self-healing and non-diffraction, are essential for a wide range of photonics applications. Recently, metasurfaces have provided an efficient platform for generating desired Airy beams within a thin thickness, but they suffer from the narrow bandwidth, especially for two-dimensional (2D) Airy beams. Here, we propose an amplitude-tailorable polarization-converting metasurface to enable ultra-wideband 2D Airy beam generation. The amplitude and phase profiles for the 2D Airy beam can be realized by tuning only the orientation of the multi-resonant meta-atom, which can operate in the range of 6.6 GHz to 23.7 GHz, or fractional bandwidth of 113%. An exemplary prototype is measured to validate the design principle, which is in agreement with the simulation results. The proposed method holds great promise for wavefront shaping, and may facilitate the uses of Airy beam for practical applications.

18.
Genes (Basel) ; 14(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672917

RESUMO

Galega orientalis, a leguminous herb in the Fabaceae family, is an ecologically and economically important species widely cultivated for its strong stress resistance and high protein content. However, genomic information of Galega orientalis has not been reported, which limiting its evolutionary analysis. The small genome size makes chloroplast relatively easy to obtain genomic sequence for phylogenetic studies and molecular marker development. Here, the chloroplast genome of Galega orientalis was sequenced and annotated. The results showed that the chloroplast genome of G. orientalis is 125,280 bp in length with GC content of 34.11%. A total of 107 genes were identified, including 74 protein-coding genes, 29 tRNAs and four rRNAs. One inverted repeat (IR) region was lost in the chloroplast genome of G. orientalis. In addition, five genes (rpl22, ycf2, rps16, trnE-UUC and pbf1) were lost compared with the chloroplast genome of its related species G. officinalis. A total of 84 long repeats and 68 simple sequence repeats were detected, which could be used as potential markers in the genetic studies of G. orientalis and related species. We found that the Ka/Ks values of three genes petL, rpl20, and ycf4 were higher than one in the pairwise comparation of G. officinalis and other three Galegeae species (Calophaca sinica, Caragana jubata, Caragana korshinskii), which indicated those three genes were under positive selection. A comparative genomic analysis of 15 Galegeae species showed that most conserved non-coding sequence regions and two genic regions (ycf1 and clpP) were highly divergent, which could be used as DNA barcodes for rapid and accurate species identification. Phylogenetic trees constructed based on the ycf1 and clpP genes confirmed the evolutionary relationships among Galegeae species. In addition, among the 15 Galegeae species analyzed, Galega orientalis had a unique 30-bp intron in the ycf1 gene and Tibetia liangshanensis lacked two introns in the clpP gene, which is contrary to existing conclusion that only Glycyrrhiza species in the IR lacking clade (IRLC) lack two introns. In conclusion, for the first time, the complete chloroplast genome of G. orientalis was determined and annotated, which could provide insights into the unsolved evolutionary relationships within the genus Galegeae.


Assuntos
Fabaceae , Galega , Genoma de Cloroplastos , Filogenia , Genômica
19.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674780

RESUMO

Low temperature is an important limiting factor in the environment that affects the distribution, growth and development of warm-season grasses. Transcriptome sequencing has been widely used to mine candidate genes under low-temperature stress and other abiotic stresses. However, the molecular mechanism of centipedegrass in response to low-temperature stress was rarely reported. To understand the molecular mechanism of centipedegrass in response to low-temperature stress, we measured physiological indicators and sequenced the transcriptome of centipedegrass under different stress durations. Under cold stress, the SS content and APX activity of centipedegrass increased while the SOD activity decreased; the CAT activity, POD activity and flavonoid content first increased and then decreased; and the GSH-Px activity first decreased and then increased. Using full-length transcriptome and second-generation sequencing, we obtained 38.76 G subreads. These reads were integrated into 177,178 isoforms, and 885 differentially expressed transcripts were obtained. The expression of AUX_IAA and WRKY transcription factors and HSF transcription-influencing factors increased during cold stress. Through KEGG enrichment analysis, we determined that arginine and proline metabolism, plant circadian rhythm, plant hormone signal transduction and the flavonoid biosynthesis pathways played important roles in the cold stress resistance of centipedegrass. In addition, by using weighted gene coexpression network analysis (WGCNA), we determined that the turquoise module was significantly correlated with SS content and APX activity, while the blue module was significantly negatively correlated with POD and CAT activity. This paper is the first to report the response of centipedegrass to cold stress at the transcriptome level. Our results help to clarify the molecular mechanisms underlying the cold tolerance of warm-season grasses.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Resposta ao Choque Frio/genética , Poaceae/genética , Poaceae/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
20.
Opt Express ; 30(19): 33613-33626, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242392

RESUMO

The independent tailoring of electromagnetic waves with different circular-polarized (CP) wavefront in both reflection and transmission channels is of broad scientific and technical interest, offering ultimate degrees of freedom in designing advanced devices with the merits of functionality integration and spatial exploitation. However, most metasurfaces only provide dependent wavefront control of dual-helicity in a single channel, restricting their applications to limited practical scenarios. Herein, we propose a full-space dual-helicity decoupled metasurface and apply it to assemble a multi-folded reflective antenna (MFRA) in the microwave regime. A multilayered chiral meta-atom is designed and optimized to reflect a particular helical wave while allowing the orthogonal helical wave to penetrate through, with simultaneous full span of phase modulations in both channels. When a uniform reflection and a hyperbolic transmission phase profile is imposed simultaneously on the metasurface in a polarization-selective manner, it can be engineered to conduct specular reflection for one helical wave and convergent transmission of the other helical wave. Combining the proposed metasurface with a metallic plate as a bottom reflector and an integrated microstrip patch antenna in the center of metasurface as a feed, a MFRA is realized with a low profile, high efficiency, and high polarization purity in a broad frequency band. The proposed design method of the dual-helicity decoupled metasurface and its antenna application provide opportunities for high-performance functional devices, promising more potential in future communication and detection systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...