Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645124

RESUMO

Major depressive disorder (MDD) is a common and often severe condition that profoundly diminishes quality of life for individuals across ages and demographic groups. Unfortunately, current antidepressant and psychotherapeutic treatments exhibit limited efficacy and unsatisfactory response rates in a substantial number of patients. The development of effective therapies for MDD is hindered by the insufficiently understood heterogeneity within the disorder and its elusive underlying mechanisms. To address these challenges, we present a target-oriented multimodal fusion framework that robustly predicts antidepressant response by integrating structural and functional connectivity data (sertraline: R2 = 0.31; placebo: R2 = 0.22). Through the model, we identify multimodal neuroimaging biomarkers of antidepressant response and observe that sertraline and placebo show distinct predictive patterns. We further decompose the overall predictive patterns into constitutive network constellations with generalizable structural-functional co-variation, which exhibit treatment-specific association with personality traits and behavioral/cognitive task performance. Our innovative and interpretable multimodal framework provides novel insights into the intricate neuropsychopharmacology of antidepressant treatment and paves the way for advances in precision medicine and development of more targeted antidepressant therapeutics.

2.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496573

RESUMO

Neurodevelopmental disorders, such as Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD), are characterized by comorbidity and heterogeneity. Identifying distinct subtypes within these disorders can illuminate the underlying neurobiological and clinical characteristics, paving the way for more tailored treatments. We adopted a novel transdiagnostic approach across ADHD and ASD, using cutting-edge contrastive graph machine learning to determine subtypes based on brain network connectivity as revealed by resting-state functional magnetic resonance imaging. Our approach identified two generalizable subtypes characterized by robust and distinct functional connectivity patterns, prominently within the frontoparietal control network and the somatomotor network. These subtypes exhibited pronounced differences in major cognitive and behavioural measures. We further demonstrated the generalizability of these subtypes using data collected from independent study sites. Our data-driven approach provides a novel solution for parsing biological heterogeneity in neurodevelopmental disorders.

3.
J Neural Eng ; 21(1)2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215493

RESUMO

Objective. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs).Approach. Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI.Main results. The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification.Significance. Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at:https://github.com/Shuning-Han/FC-based-GCN.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Disfunção Cognitiva/diagnóstico por imagem , Mapeamento Encefálico/métodos , Demência/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem
4.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461451

RESUMO

BACKGROUND: Dementia is highly heterogeneous, with pronounced individual differences in neuropsychiatric symptoms (NPS) and neuroimaging findings. Understanding the heterogeneity of NPS and associated brain abnormalities is essential for effective management and treatment of dementia. METHODS: Using large-scale neuroimaging data from the Open Access Series of Imaging Studies (OASIS-3), we conducted a multivariate sparse canonical correlation analysis to identify functional connectivity-informed symptom dimensions. Subsequently, we performed a clustering analysis on the obtained latent connectivity profiles to reveal neurophysiological subtypes and examined differences in abnormal connectivity and phenotypic profiles between subtypes. RESULTS: We identified two reliable neuropsychiatric subsyndromes - behavioral and anxiety in the connectivity-NPS linked latent space. The behavioral subsyndrome was characterized by the connections predominantly involving the default mode and somatomotor networks and neuropsychiatric symptoms involving nighttime behavior disturbance, agitation, and apathy. The anxiety subsyndrome was mainly contributed by connections involving the visual network and the anxiety neuropsychiatric symptom. By clustering individuals along these two subsyndromes-linked connectivity latent features, we uncovered three subtypes encompassing both dementia patients and healthy controls. Dementia in one subtype exhibited similar brain connectivity and cognitive-behavior patterns to healthy individuals. However, dementia in the other two subtypes showed different dysfunctional connectivity profiles involving the default mode, frontoparietal control, somatomotor, and ventral attention networks, compared to healthy individuals. These dysfunctional connectivity patterns were associated with differences in baseline dementia severity and longitudinal progression of cognitive impairment and behavioral dysfunction. CONCLUSIONS: Our findings shed valuable insights into disentangling the neuropsychiatric and brain functional heterogeneity of dementia, offering a promising avenue to improve clinical management and facilitate the development of timely and targeted interventions for dementia patients.

5.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292736

RESUMO

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by social interaction deficits, communication difficulties, and restricted/repetitive behaviors or fixated interests. Despite its high prevalence, development of effective therapy for ASD is hindered by its symptomatic and neurophysiological heterogeneities. To collectively dissect the ASD heterogeneity in neurophysiology and symptoms, we develop a new analytical framework combining contrastive learning and sparse canonical correlation analysis to identify resting-state EEG connectivity dimensions linked to ASD behavioral symptoms within 392 ASD samples. Two dimensions are successfully identified, showing significant correlations with social/communication deficits (r = 0.70) and restricted/repetitive behaviors (r = 0.45), respectively. We confirm the robustness of these dimensions through cross-validation and further demonstrate their generalizability using an independent dataset of 223 ASD samples. Our results reveal that the right inferior parietal lobe is the core region displaying EEG activity associated with restricted/repetitive behaviors, and functional connectivity between the left angular gyrus and the right middle temporal gyrus is a promising biomarker of social/communication deficits. Overall, these findings provide a promising avenue to parse ASD heterogeneity with high clinical translatability, paving the way for treatment development and precision medicine for ASD.

6.
medRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37162878

RESUMO

Cocaine use disorder (CUD) is a prevalent substance abuse disorder, and repetitive transcranial magnetic stimulation (rTMS) has shown potential in reducing cocaine cravings. However, a robust and replicable biomarker for CUD phenotyping is lacking, and the association between CUD brain phenotypes and treatment response remains unclear. Our study successfully established a cross-validated functional connectivity signature for accurate CUD phenotyping, using resting-state functional magnetic resonance imaging from a discovery cohort, and demonstrated its generalizability in an independent replication cohort. We identified phenotyping FCs involving increased connectivity between the visual network and dorsal attention network, and between the frontoparietal control network and ventral attention network, as well as decreased connectivity between the default mode network and limbic network in CUD patients compared to healthy controls. These abnormal connections correlated significantly with other drug use history and cognitive dysfunctions, e.g., non-planning impulsivity. We further confirmed the prognostic potential of the identified discriminative FCs for rTMS treatment response in CUD patients and found that the treatment-predictive FCs mainly involved the frontoparietal control and default mode networks. Our findings provide new insights into the neurobiological mechanisms of CUD and the association between CUD phenotypes and rTMS treatment response, offering promising targets for future therapeutic development.

7.
Mol Psychiatry ; 28(6): 2490-2499, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36732585

RESUMO

Though sertraline is commonly prescribed in patients with major depressive disorder (MDD), its superiority over placebo is only marginal. This is in part due to the neurobiological heterogeneity of the individuals. Characterizing individual-unique functional architecture of the brain may help better dissect the heterogeneity, thereby defining treatment-predictive signatures to guide personalized medication. In this study, we investigate whether individualized brain functional connectivity (FC) can define more predictable signatures of antidepressant and placebo treatment in MDD. The data used in the present work were collected by the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study. Patients (N = 296) were randomly assigned to antidepressant sertraline or placebo double-blind treatment for 8 weeks. The whole-brain FC networks were constructed from pre-treatment resting-state functional magnetic resonance imaging (rs-fMRI). Then, FC was individualized by removing the common components extracted from the raw baseline FC to train regression-based connectivity predictive models. With individualized FC features, the established prediction models successfully identified signatures that explained 22% variance for the sertraline group and 31% variance for the placebo group in predicting HAMD17 change. Compared with the raw FC-based models, the individualized FC-defined signatures significantly improved the prediction performance, as confirmed by cross-validation. For sertraline treatment, predictive FC metrics were predominantly located in the left middle temporal cortex and right insula. For placebo, predictive FC metrics were primarily located in the bilateral cingulate cortex and left superior temporal cortex. Our findings demonstrated that through the removal of common FC components, individualization of FC metrics enhanced the prediction performance compared to raw FC. Associated with previous MDD clinical studies, our identified predictive biomarkers provided new insights into the neuropathology of antidepressant and placebo treatment.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Sertralina/farmacologia , Sertralina/uso terapêutico , Imageamento por Ressonância Magnética , Depressão , Resultado do Tratamento , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/diagnóstico por imagem , Método Duplo-Cego
8.
Neuroimage ; 246: 118774, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861391

RESUMO

The pathological mechanism of attention deficit hyperactivity disorder (ADHD) is incompletely specified, which leads to difficulty in precise diagnosis. Functional magnetic resonance imaging (fMRI) has emerged as a common neuroimaging technique for studying the brain functional connectome. Most existing methods that have either ignored or simply utilized graph structure, do not fully leverage the potentially important topological information which may be useful in characterizing brain disorders. There is a crucial need for designing novel and efficient approaches which can capture such information. To this end, we propose a new dynamic graph convolutional network (dGCN), which is trained with sparse brain regional connections from dynamically calculated graph features. We also develop a novel convolutional readout layer to improve graph representation. Our extensive experimental analysis demonstrates significantly improved performance of dGCN for ADHD diagnosis compared with existing machine learning and deep learning methods. Visualizations of the salient regions of interest (ROIs) and connectivity based on informative features learned by our model show that the identified functional abnormalities mainly involve brain regions in temporal pole, gyrus rectus, and cerebellar gyri from temporal lobe, frontal lobe, and cerebellum, respectively. A positive correlation was further observed between the identified connectomic abnormalities and ADHD symptom severity. The proposed dGCN model shows great promise in providing a functional network-based precision diagnosis of ADHD and is also broadly applicable to brain connectome-based study of mental disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Rede Nervosa/fisiopatologia , Redes Neurais de Computação , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
9.
Front Cardiovasc Med ; 8: 726943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589528

RESUMO

Contrast-enhanced cardiac magnetic resonance imaging (MRI) is routinely used to determine myocardial scar burden and make therapeutic decisions for coronary revascularization. Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. We report a modified Generative Adversarial Network (GAN) augmentation method to improve the binary classification of myocardial scar using both pre-clinical and clinical approaches. For the initial training of the MobileNetV2 platform, we used the images generated from a high-field (9.4T) cardiac MRI of a mouse model of acute myocardial infarction (MI). Once the system showed 100% accuracy for the classification of acute MI in mice, we tested the translational significance of this approach in 91 patients with an ischemic myocardial scar, and 31 control subjects without evidence of myocardial scarring. To obtain a comparable augmentation dataset, we rotated scar images 8-times and control images 72-times, generating a total of 6,684 scar images and 7,451 control images. In humans, the use of Progressive Growing GAN (PGGAN)-based augmentation showed 93% classification accuracy, which is far superior to conventional automated modules. The use of other attention modules in our CNN further improved the classification accuracy by up to 5%. These data are of high translational significance and warrant larger multicenter studies in the future to validate the clinical implications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...