Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602710

RESUMO

Nonstructural carbohydrates (NSC) are essential for tree growth and adaptation, yet our understanding of the seasonal storage and mobilization dynamics of whole-tree NSC is still limited, especially when tree functional types are involved. Here, Quercus acutissima Carruth. and Pinus massoniana Lamb. with distinct life-history traits (i.e., a deciduous broadleaf species vs. an evergreen coniferous species) were studied to assess the size and seasonal fluctuations of organ and whole-tree NSC pools with a focus on comparing differences in carbon resource mobilization patterns between the two species. We sampled the organs (leaf, branch, stem, and root) of the target trees repeatedly over four seasons of the year. Then, NSC concentrations in each organ were paired with biomass estimates from the allometric model to generate whole-tree NSC pools. The seasonal dynamics of the whole-tree NSC of Q. acutissima and P. massoniana reached the peak in autumn and summer, respectively. The starch pools of the two species were supplemented in the growing season while the soluble sugar pools were the largest in the dormant season. Seasonal dynamics of organ-level NSC concentrations and pools were affected by organ type and tree species, with above-ground organs generally increasing during the growing season and P. massoniana roots decreasing during the growing season. In addition, the whole-tree NSC pools of P. massoniana were larger but Q. acutissima showed larger seasonal fluctuations, indicating that larger storage was not associated with more pronounced seasonal fluctuations. We also found that the branch and root were the most dynamic organs of Q. acutissima and P. massoniana, respectively, and were the major suppliers of NSC to support tree growth activities. These results provide fundamental insights into the dynamics and mobilization patterns of NSC at the whole-tree level, and have important implications for investigating environmental adaptions of different tree functional types.

2.
Front Biosci (Landmark Ed) ; 29(2): 76, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38420809

RESUMO

BACKGROUND: Collagen-related cell adhesion molecules (CAMs) are a major component of the extracellular matrix (ECM) and often accumulate in the liver during chronic liver disease or hepatocellular carcinoma (HCC). In this study we identified several promising collagens related to CAMs that may be of clinical use for the diagnosis and prognosis of HCC. METHODS: We obtained multi-omics data including RNA sequencing (RNA-Seq) data, microarray data, proteomic data from the TCGA, GEO databases, GTEx, and NODE. Bioinformatics analyses were then performed to investigate correlations between the expression patterns of significant genes and HCC. Tumor tissue and para-cancerous tissue samples from HCC patients were also used to validate the results using RT-PCR. RESULTS: A literature research and LASSO-COX analysis identified three significant collagen-related CAM genes: SERPINH1, DCN, and ITGB1. Immunohistochemistry images in the Human Protein Atlas Project database showed that SERPINH1 and ITGB1 proteins were moderately or highly expressed in HCC tumor tissues compared to para-cancerous tissue, whereas DCN expression was lower in HCC tumor tissue. These results were validated by RT-PCR. Low- and high-risk groups of HCC patients were distinguished by the logistic panel in the TCGA database. These showed significantly different prognosis, clinicopathological features, and immune cell infiltration. Logistic regression was used to construct predictive models based on the individual expression levels of DCN, SERPINH1, and ITGB1. These showed highly accurate diagnostic ability (AUC = 0.987). CONCLUSIONS: The current findings suggest that the collagen-related CAMs DCN, SERPINH1, and ITGB1 may be potential therapeutic targets in HCC. Logistic panels of DCN, SERPINH1 and ITGB1 could serve as non-invasive and effective diagnostic biomarkers for HCC. CLINICAL TRIAL REGISTRATION: Identifier: NCT03189992. Registered on June 4, 2017. Retrospectively registered (https://clinicaltrials.gov/).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Proteômica , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Colágeno
3.
Nat Commun ; 15(1): 776, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278801

RESUMO

Critical phenomena are one of the most captivating areas of modern physics, whereas the relevant experimental and theoretical studies are still very challenging. Particularly, the underlying mechanism behind the anomalous thermoelectric properties during critical phase transitions remains elusive, i.e., the current theoretical models for critical electrical transports are either qualitative or solely focused on a specific transport parameter. Herein, we develop a quantitative theory to model the electrical transports during critical phase transitions by incorporating both the band broadening effect and carrier-soft TO phonon interactions. It is found that the band-broadening effect contributes an additional term to Seebeck coefficient, while the carrier-soft TO phonon interactions greatly affects both electrical resistivity and Seebeck coefficient. The universality and validity of our model are well confirmed by experimental data. Furthermore, the features of critical phase transitions are effectively tuned. For example, alloying S in Cu2Se can reduce the phase transition temperature but increase the phase transition parameter b. The maximum thermoelectric figure of merit zT is pushed to a high value of 1.3 at the critical point (377 K), which is at least twice as large as those of normal static phases. This work not only provides a clear picture of the critical electrical transports but also presents new guidelines for future studies in this exciting area.

4.
Nat Commun ; 14(1): 8442, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114552

RESUMO

The flexible thermoelectric technique, which can convert heat from the human body to electricity via the Seebeck effect, is expected to provide a peerless solution for the power supply of wearables. The recent discovery of ductile semiconductors has opened a new avenue for flexible thermoelectric technology, but their power factor and figure-of-merit values are still much lower than those of classic thermoelectric materials. Herein, we demonstrate the presence of morphotropic phase boundary in Ag2Se-Ag2S pseudobinary compounds. The morphotropic phase boundary can be freely tuned by adjusting the material thermal treatment processes. High-performance ductile thermoelectric materials with excellent power factor (22 µWcm-1 K-2) and figure-of-merit (0.61) values are realized near the morphotropic phase boundary at 300 K. These materials perform better than all existing ductile inorganic semiconductors and organic materials. Furthermore, the in-plane flexible thermoelectric device based on these high-performance thermoelectric materials demonstrates a normalized maximum power density reaching 0.26 Wm-1 under a temperature gradient of 20 K, which is at least two orders of magnitude higher than those of flexible organic thermoelectric devices. This work can greatly accelerate the development of flexible thermoelectric technology.

5.
Materials (Basel) ; 16(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959538

RESUMO

Compared to traditional actuators (such as piezoelectric ceramics), metal actuators possess the advantages of a low energy consumption, large strain amplitude, and high strain energy density. However, most of the existing metal actuators with an excellent comprehensive performance are composed of precious metals, which are limited by high costs and have almost no possibility for large-scale production in the future. This study focuses on non-precious metal materials and exploits a one-step chemical dealloying method to prepare bulk nanoporous (NP) CoCuAl actuators (NP-CCA) from Al70Co20Cu10 alloy. The microstructure and actuation properties of the NP-CCA were analyzed in detail. The dense continuous nanoscale pores provide an excellent network connectivity for a large strain response, enabling the NP-CCA to achieve a strain amplitude of up to 1.19% (more than eight and two times that of NP-Pt and NP-Ag, respectively), comparable to precious metal actuators. In addition, the NP-CCA possesses a high strain energy density, which is prominent in many precious metal actuation materials (such as NP-Au, NP-Ag, and NP-Pt).

6.
Int J Immunopathol Pharmacol ; 37: 3946320231184988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37400958

RESUMO

OBJECTIVES: This experimental study aims to investigate the role of long noncoding RNA X-inactive specific transcript (lncRNA XIST) in the microglial polarization and microglia-mediated neurotoxicity in Alzheimer's disease (AD). METHODS: The levels of XIST and microRNA-107 (miR-107) were detected by quantitative real-time polymerase chain reaction. The spatial learning and memory capability of APPswe/PS1dE9 (APP/PS1) mice were evaluated by the Morris water maze test. The morphology of mouse hippocampus cells was evaluated by hematoxylin and eosin staining. The Iba1-positive microglia were labeled by immunohistochemistry staining. The protein levels were determined by western blot and enzyme-linked immunosorbent assay. Neurotoxicity was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, caspase-3 activity, and Cell Counting Kit-8 assay. The XIST, miR-107, and AD targets were predicted by bioinformatics analysis. RESULTS: The level of XIST was increased in APP/PS1 mice, and XIST silencing ameliorated AD progression. XIST silencing suppressed microglia activation, microglial M1 polarization, and proinflammatory factor levels, but promoted microglial M2 polarization in APP/PS1 mice and Aß1-42-treated BV-2 cells. XIST knockdown reduced Aß1-42-induced microglia-mediated apoptosis and enhanced cell viability in HT22 cells. XIST silencing down-regulated miR-107 level and attenuated Aß1-42-caused suppression of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Those effects of XIST silencing were attenuated by miR-107 inhibitor or LY294002. CONCLUSION: Downregulation of XIST lessened Aß1-42-induced microglia-mediated neurotoxicity by modulating microglial M1/M2 polarization, which may be mediated by the miR-107/PI3K/Akt pathway.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microglia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Doença de Alzheimer/genética , MicroRNAs/genética , MicroRNAs/metabolismo
7.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37358218

RESUMO

Silver sulfide in monoclinic phase (α-Ag2S) has attracted significant attention owing to its metal-like ductility and promising thermoelectric properties near room temperature. However, first-principles studies on this material by density functional theory calculations have been challenging as both the symmetry and atomic structure of α-Ag2S predicted from such calculations are inconsistent with experimental findings. Here, we propose that a dynamical approach is imperative for correctly describing the structure of α-Ag2S. The approach is based on a combination of ab initio molecular dynamics simulation and deliberately chosen density functional considering both proper treatment of the van der Waals interaction and on-site Coulomb interaction. The obtained lattice parameters and atomic site occupations of α-Ag2S are in good agreement with experimental data. A stable phonon spectrum at room temperature can be obtained from this structure, which also yields a bandgap in accord with experimental measurements. The dynamical approach thus paves the way for studying this important ductile semiconductor in not only thermoelectric but also optoelectronic applications.

8.
Aging (Albany NY) ; 15(4): 1074-1106, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812479

RESUMO

Immune-related genes (IRGs) have attracted attention in recent years as therapeutic targets in various tumors. However, the role of IRGs in gastric cancer (GC) has not been clearly elucidated. This study presents a comprehensive analysis exploring the clinical, molecular, immune, and drug response features characterizing the IRGs in GC. Data were acquired from the TCGA and GEO databases. The Cox regression analyses were performed to develop a prognostic risk signature. The genetic variants, immune infiltration, and drug responses associated with the risk signature were explored using bioinformatics methods. Lastly, the expression of the IRS was verified by qRT-PCR in cell lines. In this manner, an immune-related signature (IRS) was established based on 8 IRGs. According to the IRS, patients were divided into the low-risk group (LRG) and high-risk group (HRG). Compared with the HRG, the LRG was characterized by a better prognosis, high genomic instability, more CD8+ T cell infiltration, greater sensitivity to chemotherapeutic drugs, and greater likelihood of benefiting from the immunotherapy. Moreover, the expression result showed good consistency between the qRT-PCR and TCGA cohort. Our findings provide insights into the specific clinical and immune features underlying the IRS, which may be important for patient treatment.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Prognóstico , Linfócitos T CD8-Positivos , Linhagem Celular , Biologia Computacional
9.
Adv Mater ; 35(1): e2110236, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36036433

RESUMO

Thermoelectric technology provides a promising solution to sustainable energy utilization and scalable power supply. Recently, Ag2 Q-based (Q = S, Se, Te) silver chalcogenides have come forth as potential thermoelectric materials that are endowed with complex crystal structures, high carrier mobility coupled with low lattice thermal conductivity, and even exceptional plasticity. This review presents the latest advances in this material family, from binary compounds to ternary and quaternary alloys, covering the understanding of multi-scale structures and peculiar properties, the optimization of thermoelectric performance, and the rational design of new materials. The "composition-phase structure-thermoelectric/mechanical properties" correlation is emphasized. Flexible and hetero-shaped thermoelectric prototypes based on Ag2 Q materials are also demonstrated. Several key problems and challenges are put forward concerning further understanding and optimization of Ag2 Q-based thermoelectric chalcogenides.

10.
Adv Mater ; 34(19): e2108573, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293020

RESUMO

To date, thermoelectric materials research stays focused on optimizing the material's band edge details and disfavors low mobility. Here, the paradigm is shifted from the band edge to the mobility edge, exploring high thermoelectricity near the border of band conduction and hopping. Through coalloying iodine and sulfur, the plain crystal structure is modularized of liquid-like thermoelectric material Cu2 Te with mosaic nanograins and the highly size mismatched S/Te sublattice that chemically quenches the Cu sublattice and drives the electronic states from itinerant to localized. A state-of-the-art figure of merit of 1.4 is obtained at 850 K for Cu2 (S0.4 I0.1 Te0.5 ); and remarkably, it is achieved near the Mott-Ioffe-Regel limit unlike mainstream thermoelectric materials that are band conductors. Broadly, pairing structural modularization with the high performance near the Mott-Ioffe-Regel limit paves an important new path towards the rational design of high-performance thermoelectric materials.

11.
Chin J Nat Med ; 19(12): 944-953, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34961592

RESUMO

Huosu Yangwei (HSYW) Formula is a traditioanl Chinese herbal medicine that has been extensively used to treat chronic atrophic gastritis, precancerous lesions of gastric cancer and advanced gastric cancer. However, the effective compounds of HSYW and its related anti-tumor mechanisms are not completely understood. In the current study, 160 ingredients of HSYW were identified and 64 effective compounds were screened by the ADMET evaluation. Furthermore, 64 effective compounds and 2579 potential targets were mapped based on public databases. Animal experiments demonstrated that HSYW significantly inhibited tumor growth in vivo. Transcriptional profiles revealed that 81 mRNAs were differentially expressed in HSYW-treated N87-bearing Balb/c mice. Network pharmacology and PPI network showed that 12 core genes acted as potential markers to evaluate the curative effects of HSYW. Bioinformatics and qRT-PCR results suggested that HSYW might regulate the mRNA expression of DNAJB4, CALD, AKR1C1, CST1, CASP1, PREX1, SOCS3 and PRDM1 against tumor growth in N87-bearing Balb/c mice.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Animais , Biomarcadores , China , Camundongos , Farmacologia em Rede , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
12.
ACS Appl Mater Interfaces ; 13(50): 60192-60199, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34847670

RESUMO

Ag2Se is a narrow band gap n-type semiconductor with high carrier mobility and low lattice thermal conductivity. It has high thermoelectric performance near room temperature. However, there is a noticeable data discrepancy for thermoelectric performance in the reported literature studies, which greatly hinders the rational understanding and potential application of this material. In this work, we comprehensively studied the homogeneity, reproducibility, and thermal stability of bulk Ag2Se prepared by melting and mechanical alloying methods followed by spark plasma sintering. By virtue of the atom probe topology technique, we revealed nanosized Ag- or Se-rich precipitates and micropores with Se-aggregated interfaces that have not been detected previously. The samples prepared by melting and spark plasma sintering exhibit the best homogeneity and repeatability in thermoelectric properties despite abundant nanoprecipitates. Moreover, the thermoelectric performance of Ag2Se is greatly improved by introducing a slight amount of excess selenium. The average zT can steadily reach 0.8-0.9 in the range of 300-380 K, which is among the highest values reported for Ag2Se-based materials. This work will rationalize the evaluation of the thermoelectric performance of Ag2Se.

13.
Aging (Albany NY) ; 13(20): 23620-23636, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644262

RESUMO

Amyloid-ß (Aß) accumulating is considered as a causative factor for formation of senile plaque in Alzheimer's disease (AD), but its mechanism is still elusive. The Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2), a key redox cofactor for energy metabolism, is reduced in AD. Accumulative evidence has shown that the decrease of α-secretase activity, a disintegrin and metalloprotease domain 10 (ADAM10), is responsible for the increase of Aß productions in AD patient's brain. Here, we observe that the activity of α-secretase ADAM10 and levels of Nmnat2 are significantly decreased, meanwhile there is a simultaneous elevation of Aß in Tg2576 mice. Over-expression of Nmnat2 increases the mRNA expression of α-secretase ADAM10 and its activity and inhibits Aß production in N2a/APPswe cells, which can be abolished by Compound C, an AMPK antagonist, suggesting that AMPK is involved in over-expression of Nmnat2 against Aß production. The further assays demonstrate that Nmnat2 activates AMPK by up-regulating the ratio of NAD+/NADH, moreover AMPK agonist AICAR can also increase ADAM10 activity and reduces Aß1-40/1-42. Taken together, Nmnat2 suppresses Aß production and up-regulates ADAM10 in AMPK activity-dependent manner, suggesting that Nmnat2 may serve as a new potential target in arresting AD.


Assuntos
Proteína ADAM10 , Proteínas Quinases Ativadas por AMP , Secretases da Proteína Precursora do Amiloide , Amiloide , Proteínas de Membrana , Nicotinamida-Nucleotídeo Adenililtransferase , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Amiloide/genética , Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Regulação para Cima/genética
14.
Science ; 369(6503): 542-545, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32732421

RESUMO

Inorganic semiconductors are vital for a number of critical applications but are almost universally brittle. Here, we report the superplastic deformability of indium selenide (InSe). Bulk single-crystalline InSe can be compressed by orders of magnitude and morphed into a Möbius strip or a simple origami at room temperature. The exceptional plasticity of this two-dimensional van der Waals inorganic semiconductor is attributed to the interlayer gliding and cross-layer dislocation slip that are mediated by the long-range In-Se Coulomb interaction across the van der Waals gap and soft intralayer In-Se bonding. We propose a combinatory deformability indicator (Ξ) to prescreen candidate bulk semiconductors for use in next-generation deformable or flexible electronics.

15.
ACS Appl Mater Interfaces ; 12(36): 40486-40494, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805825

RESUMO

In this work, we report a series of Cu3RTe3 (R = Y, Sm, and Dy) ternary compounds with a trigonal structure (R3̅) as a family of new thermoelectric materials. First-principles calculations show that Cu3RTe3 (R = Y, Sm, and Dy) compounds are semiconductors with similar band structures and moderate band gaps (0.69-0.82 eV). The synthesized polycrystalline Cu3RTe3 (R = Y, Sm, and Dy) compounds possess moderate carrier concentrations (0.8-2.2 × 1020 cm-3) and density-of-state effective masses (around 1.1 me), yielding decent electrical transport performance. Furthermore, intrinsically low lattice thermal conductivities, below 1 W m-1 K-1 at 300-900 K, originating from the heavy average atomic masses and large number of atoms in the unit cell, are observed for Cu3RTe3 (R = Y, Sm, and Dy). Finally, Cu3DyTe3 demonstrates a peak dimensionless figure of merit of 0.9 at 900 K, which is among the highest reported for the Cu/Ag-based tellurides.

17.
Phys Chem Chem Phys ; 22(14): 7374-7380, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32211646

RESUMO

Copper sulfides have attracted great attention recently in the thermoelectric community due to the liquid-like behavior of Cu ions. Among the numerous copper sulfides, digenite Cu1.80S has a poorer thermoelectric performance but better stability than the state-of-the-art binary copper sulfide Cu1.97S. In this study, good stability and high thermoelectric performance were simultaneously obtained in Fe-doped Cu1.80S. Because Fe ions will not form a concentration gradient under an external field to change the critical voltage, Fe-doped Cu1.80S samples inherit the good stability of the pristine Cu1.80S. The critical voltage for Cu1.80Fe0.064S is 0.16 V at 750 K, which has been the largest value reported so far. Likewise, the Fe dopants can significantly improve the thermoelectric performance by suppressing the too high electrical conductivity of Cu1.80S. The peak dimensionless figure of merit (zT) for Cu1.80Fe0.064S is around 0.8 at 750 K, about four times that of Cu1.80S. The average zT for Cu1.80Fe0.064S is 0.40 in 300-750 K, which is amongst the highest values in reported thermoelectric sulfides. Combining the good stability and high thermoelectric performance, the present Cu1.80Fe0.064S has great potential to be used in the application of waste heat harvesting in the middle temperature range.

18.
Biomed Pharmacother ; 125: 110028, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32106374

RESUMO

Ganoderma lucidum has salutary effects on tumor treatment, including pancreatic cancer and hepatocellular carcinoma. However, the molecular mechanisms underlying Ganoderma lucidum therapy is obscure. In this study, the Hepa1-6-bearing C57 BL/6 mouse model was utilized to explore the therapeutic efficacy of Ganoderma lucidum extract (GLE), documenting that it could effectively inhibit tumor growth. The microRNA (miRNA) profiles of GLE-treated and untreated mice were detected, and 25 differentially expressed (DE) miRNAs were determined, including 24 up-expressed and one down-expressed miRNAs. Using the ClusterOne algorithm, 8 hub miRNAs were isolated from the established miRNA-target network. The qRT-PCR assay demonstrated that these 8 miRNAs were up-expressed in the GLE treated tumor mice. Furthermore, the mRNA profiles showed that there are 76 DE mRNAs between GLE treated and model groups. The protein-protein interaction (PPI) network shows that Cntn1, Irs1, Nfkbia, Rybp and Ywhaz playing important roles, and qRT-PCR further revealed they were down-expressed in GLE treated Hepa1-6-bearing C57 BL/6 mice. The rebuilt miRNA-target network was shown that these 5 mRNAs were regulated by mmu-mir-23a-5p, -3102-3p, -337-3p, and -467a-3p, respectively. This study suggested that these 4 interesting miRNAs were potential biomarkers for evaluation of GLE efficacy, which may down-regulate the expression of Cntn1, Irs1, Nfkbia, Rybp and Ywhaz, and mediate many signaling pathways occurring in tumor treatment.


Assuntos
Produtos Biológicos/farmacologia , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/genética , MicroRNAs/genética , Interferência de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Reishi/química , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Adv Sci (Weinh) ; 7(1): 1901598, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31921552

RESUMO

Liquid-like materials are one family of promising thermoelectric materials discovered in the past years due to their advantanges of ultrahigh thermoelectric figure of merit (zT), low cost, and environmental friendliness. However, their practial applications are greatly limited by the low service stability from the Cu/Ag metal deposition under large current and/or temperature gradient. Both high zT for high efficiency and large critical voltage for good stability are required for liquid-like materials, but they are usually strongly correlated and hard to be tuned individually. Herein, based on the thermodynamic analysis, it is shown that such a correlation can be decoupled through doping immobile ions into the liquid-like sublattice. Taking Cu2- δ S as an example, doping immobile Fe ions in Cu1.90S scarcely degrades the initial large critical voltage, but significantly enhances the zT to 1.5 at 1000 K by tuning the carrier concentration to the optimal range. Combining the low-cost and environmentally friendly features, these Fe-doped Cu2- δ S-based compounds show great potential in civil applications. This study sheds light on the realization of both good stability and high performance for many other liquid-like thermoelectric materials that have not been considered for real applications before.

20.
Sci Bull (Beijing) ; 65(22): 1888-1893, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36738053

RESUMO

Thermoelectric materials (TMs) can uniquely convert waste heat into electricity, which provides a potential solution for the global energy crisis that is increasingly severe. Bulk Cu2Se, with ionic conductivity of Cu ions, exhibits a significant enhancement of its thermoelectric figure of merit zT by a factor of ~3 near its structural transition around 400 K. Here, we show a systematic study of the electronic structure of Cu2Se and its temperature evolution using high-resolution angle-resolved photoemission spectroscopy. Upon heating across the structural transition, the electronic states near the corner of the Brillouin zone gradually disappear, while the bands near the centre of Brillouin zone shift abruptly towards high binding energies and develop an energy gap. Interestingly, the observed band reconstruction well reproduces the temperature evolution of the Seebeck coefficient of Cu2Se, providing an electronic origin for the drastic enhancement of the thermoelectric performance near 400 K. The current results not only bridge among structural phase transition, electronic structures and thermoelectric properties in a condensed matter system, but also provide valuable insights into the search and design of new generation of thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...