RESUMO
BACKGROUND: A number of studies have reported on the effectiveness of sulbactam-based therapies for Acinetobacter baumannii infection; however, there is little evidence that sulbactam-based therapies are more or less effective than alternative therapies. Unfortunately, there is a distinct lack of high quality data (i.e., from randomized controlled trials) available on this issue. Therefore, we conducted a systematic review and meta-analysis comparing the efficacy of sulbactam-based and non-sulbactam-based regimens in the treatment of A. baumannii infection. METHODS: We searched PubMed, MEDLINE, Biomedical Central, Google Scholar, the China National Knowledge Infrastructure, the Cochrane library, and the Directory of Open Access using the terms "sulbactam and baumannii" or "maxtam and baumannii". Randomized controlled trials, controlled clinical studies, and cohort studies were considered for inclusion. The primary outcome was the clinical response rate for sulbactam-based therapy vs comparator therapies. RESULTS: Four studies (1 prospective, 3 retrospective) were included in the metaanalysis. Sulbactam was given in combination with ampicillin, carbapenem, or cefoperazone (n = 112 participants). Comparator drugs included colistin, cephalosporins, anti-pseudomonas penicillins, fluoroquinolones, minocycline/doxycycline, aminoglycosides, tigecycline, polymyxin, imipenem/cilastatin, and combination therapy (n = 107 participants). The combined clinical response rate odds ratio did not significantly favor sulbactam-based therapy over comparator therapy (odds ratio = 1.054, 95% confidence interval = 0.550-2.019, p = 0.874), nor did any of the individual study odds ratios. CONCLUSIONS: The available evidence suggests that sulbactam-based therapy may be similarly efficacious to alternative antimicrobial therapies for the treatment of A. baumannii infection. Further research on this issue is warranted given the limited availability of data from high quality/randomized controlled trials.
Assuntos
Humanos , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Antibacterianos/administração & dosagem , Sulbactam/administração & dosagem , Quimioterapia Combinada , Resultado do TratamentoRESUMO
BACKGROUND: A number of studies have reported on the effectiveness of sulbactam-based therapies for Acinetobacter baumannii infection; however, there is little evidence that sulbactam-based therapies are more or less effective than alternative therapies. Unfortunately, there is a distinct lack of high quality data (i.e., from randomized controlled trials) available on this issue. Therefore, we conducted a systematic review and meta-analysis comparing the efficacy of sulbactam-based and non-sulbactam-based regimens in the treatment of A. baumannii infection. METHODS: We searched PubMed, MEDLINE, Biomedical Central, Google Scholar, the China National Knowledge Infrastructure, the Cochrane library, and the Directory of Open Access using the terms "sulbactam and baumannii" or "maxtam and baumannii". Randomized controlled trials, controlled clinical studies, and cohort studies were considered for inclusion. The primary outcome was the clinical response rate for sulbactam-based therapy vs comparator therapies. RESULTS: Four studies (1 prospective, 3 retrospective) were included in the meta-analysis. Sulbactam was given in combination with ampicillin, carbapenem, or cefoperazone (n=112 participants). Comparator drugs included colistin, cephalosporins, anti-pseudomonas penicillins, fluoroquinolones, minocycline/doxycycline, aminoglycosides, tigecycline, polymyxin, imipenem/cilastatin, and combination therapy (n=107 participants). The combined clinical response rate odds ratio did not significantly favor sulbactam-based therapy over comparator therapy (odds ratio=1.054, 95% confidence interval=0.550-2.019, p=0.874), nor did any of the individual study odds ratios. CONCLUSIONS: The available evidence suggests that sulbactam-based therapy may be similarly efficacious to alternative antimicrobial therapies for the treatment of A. baumannii infection. Further research on this issue is warranted given the limited availability of data from high quality/randomized controlled trials.
Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii , Antibacterianos/administração & dosagem , Sulbactam/administração & dosagem , Quimioterapia Combinada , Humanos , Resultado do TratamentoRESUMO
Abstract. To explore the mechanism of technetium-99m-methylene diphosphonate (MDP) uptake within tumor through analyze a distribution of Tc-99m MDP in mice bearing tumor cell lines. Methods: The uptake of Tc-99m MDP was analyzed in seven human tumor cell lines ( SPC-A1 adenocarcinoma of lung cancer, Bcap-37 Breast cancer, T-24 Bladder cancer, SKOV3 Ovary carcinoma, Hela-229 Cervical carcinoma, SCI-OS Osteosarcoma, SCI-375 Melanoma) and mouse Lewis lung cancer cell line. They were transplanted into athymic mice, SCID nude mice and C57BL/6 mice, respectively. Approximately 10(6) cells of each cell line were injected subcutaneously into a right chest of mouse. After 4&5 weeks, the Tc-99m MDP scintigraphy were determined 6 hours after tail vein injection of 74MBq in 0.05ml every mouse. Result: Biodistribution and tumor uptake MDP was different in the various cell types investigated. According to the RegionRatio program of Siemens Power Macintosh 9500 Computer System, region of interests (RIOs) placed on a small part of the tumor and horizontal copied to left background (T/B) and thoracic spine (T/N) of mice in Tc-99m MDP imaging. The average cpm/pixel ratios were calculated by standardized uptake measure (SUM) and determined the tumor-positive value (T/B) greater than or equal to 1.2. T/B of cell lines were sorted from higher to lower as follows: SCI-OS, Lewis, SKOV3, SCI-375, T-24, SPC-A1, Bcap-37, Hela-229. T/N: SCI-OS, SKOV3, T-24, SCI-375, Lewis, SPC-A1, Bcap-37, Hela-229. The biodistribution data of 99Tcm-MDP in SPC-A1 tumor-bearing BALB/c nude mice were given as ID/g and represent the meansñSD (n=13) in 30 hours after injection of Tc-99m MDP. ID/g of major tissue were sorted from higher to lower as follows: thoracic spine, lumbar, ribs, kidneys, the center of tumor, the ulcer of tumor, the surrounding of tumor, lymph node, blood, lungs, heart, liver. Conclusions: Most of tumor can uptake Tc-99m MDP including human adenocarcinoma. The uptake rate in the center tissue of tumor is higher than other part of tumor. The uptake rate of tumor is higher than non-skeletal tissue unless kidneys. It maybe connected with necrosis or calcification of tumor. Calcium and phosphorus ions were seen frequently in larger tumor. Not only it was caused by fibrous scar and/or surrounding tissues of granuloma but also intra-tumor coagulation and liquefaction necrosis